Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Khi quay xung quanh trục AB, giao điểm M của nửa đường tròn đường kính AB và cạnh CD sẽ tọ nên giao tuyến của mặt nón và mặt cầu.
Vẽ MH ⊥ AB
Ta có:
Mặt khác ta có CA 2 = CM.CB nên ta có
Do đó: BM = CB − CM = 3a/2 và HM = 3a/4
Gọi S 1 là diện tích toàn phần của hình nón và S 2 là diện tích mặt cầu.
Ta có: S 1 = πrl + πr 2 = 3 πa 2
S 2 = 4 πr 2 = 3 πa 2
Vậy S 1 = S 2
Gọi I là trung điểm của đoạn AA’. Ta có IO // Δ nên tâm O di động trên đường thẳng d cố định đi qua I và song song với ∆ . Mặt cầu tâm O đi qua hai điểm cố định A, A’ , có tâm di động trên đường trung trực d cố định của đoạn AA’. Vậy mặt cầu tâm O luôn luôn chứa đường tròn cố định tâm I có đường kính AA’ nằm trong mặt phẳng AA’ và vuông góc với d.
Gọi I là trung điểm của cạnh BC và O là tâm của tam giác đều ABC. Theo giả thiết ta có SA = SB = SC = a và ∠ SIO = α. Đặt OI = r, SO = h, ta có AO = 2r và
Do đó a 2 = r 2 tan 2 α + 4 r 2 = r 2 tan 2 α + 4
Vậy
Hình nón nội tiếp có đường sinh là :
Diện tích xung quanh của hình nón nội tiếp hình chóp S.ABC là:
Tam giác ADC vuông tại A nên AD 2 = DC 2 - AC 2 (1)
Tam giác ABC vuông tại A nên BC 2 = AC 2 + AB 2 (2)
Từ (1) và (2) ta suy ra AD 2 + BC 2 = DC 2 + AB 2 (3)
Ta lại có:
AC 2 = DC 2 - AD 2 và BD 2 = AD 2 + AB 2 (4)
DC 2 = 4 r 2 - h 2 , AB 2 = 4 h 2 (5)
Từ (4) và (5) ta có:
AC 2 + BD 2 = DC 2 + AB 2 = 4 r 2 - h 2 + 4 h 2 = 4 r 2 (6)
Từ (3) và (6) ta có: AD 2 + BC 2 = AC 2 + BD 2 (không đổi)
Tam giác vuông ABC có BC = 2a và AC = a nên ta suy ra ∠ ABC = 30 ° . Khi quay xung quanh trục AB cạnh BC tạo nên mặt nón tròn xoay có góc ở đỉnh bằng 60 ° và có đường tròn đáy có bán kính AC = a. Khi xoay xung quanh trục AB nửa đường tròn đường kính AB tạo nên mặt cầu có tâm là trung điểm I để đoạn AB và bán kính r = AB/2.