Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D.
Xét tứ diện vuông OABC có OA, OB, OC đôi một vuông góc nên hình chiếu của O lên mặt phẳng (ABC) chính là trực tâm H của tam giác ABC và d O ; ( A B C ) = h
Ta có 1 h 2 = 1 O A 2 + 1 O B 2 + 1 O C 2 , nên 1 O A 2 + 1 O B 2 + 1 O C 2 có giá trị nhỏ nhất khi d O ; A B C lớn nhất.
Mặt khác d O ; A B C ≤ O M , ∀ M ∈ P . Dấu "=" xảy ra khi H ≡ M hay mặt phẳng (P) đi qua M(1;2;3) và có vectơ pháp tuyến là O M → = ( 1 ; 2 ; 3 ) .
Vậy P : 1 x - 1 + 2 ( y - 2 ) + 3 z - 3 = 0 ⇔ x + 2 y + 3 z - 14 = 0
Đáp án A
Gọi A a ; 0 ; 0 , B ( 0 ; b ; 0 ) , C 0 ; 0 ; c → phương trình mặt phẳng (ABC) là x a + y b + z c = 1
Vì điểm M 1 ; 2 ; 3 ∈ P ⇒ 1 a + 2 b + 3 c = 1 , ta có 1 a + 2 b + 3 c 2 ≤ 1 2 + 2 2 + 3 2 1 a 2 + 1 b 2 + 1 c 2
Khi đó 1 O A 2 + 1 O B 2 + 1 O C 2 = 1 a 2 + 1 b 2 + 1 c 2 ≥ 1 14 . Dâu bằng xảy ra khi và chỉ khi a = 2b = 3c.
Suy ra a = 14 , b = 7 , c = 14 3 , vậy phương trình mặt phẳng (P) là x 14 + y 7 + 3 z 14 = 1 ⇔ x + 2 y + 3 z - 14 = 0 .
Đáp án A
Gọi pt mặt phẳng cần tìm là: x a + y b + z c = 1 M ( 1 ; 1 ; 2 ) ∈ ( P ) ⇒ 1 a + 1 b + 2 c = 1 ( * ) A ( a ; 0 ; 0 ) , B ( 0 ; b ; 0 ) , C ( 0 ; 0 ; c ) : O A = O B = O C ⇒ a = b = c = α > 0 ⇒ ( a ; b ; c ) ∈ { ( α ; α ; α ) , ( − α ; α ; α ) , ( α ; − α ; α ) , ( α ; α ; − α ) , ( − α ; − α ; α ) , ( − α ; α ; − α ) , ( α ; − α ; − α ) , ( − α ; − α ; − α ) }
Thay vào (*) ta thấy chỉ có 3 bộ thỏa mãn: ( α ; α ; α ) , ( − α ; α ; α ) , ( α ; − α ; α ) tương ứng có 3 mặt phẳng thỏa mãn đề bài
HD: Gọi tọa độ ba điểm A, B, C lần lượt là
Vậy độ dài ba cạnh OA, OB, OC lần lượt theo thứ tự lập thành cấp số cộng. Chọn C.