K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 4 2017

Chọn B

Gọi A, B lần lượt là giao điểm của (P)  d 1 ; (P)  d 2 .

Ta tìm được A(1;0;0), B(5;-2;1).

Khi đó đường thẳng AB là đường thẳng cần tìm.

Ta có  A B → =(4;-2;1). Vậy phương trình tham số của đường thẳng cần tìm là 

Vecto chir phương của đường thẳng  ∆ vuông góc với mặt phẳng (P) là một vecto pháp tuyến của mặt phẳng (P)

17 tháng 5 2017

Đáp án C

=> d qua M và có VTCP

24 tháng 7 2018

1 tháng 11 2019

Chọn D.

Vì M thuộc ∆ nên tọa độ M(-2+t;2 t;-t)

Mà điểm M thuộc mp (P) thay tọa độ điểm M vào phương trình mp(P) ta được:

-2 + t + 2(2 + t) - 3.(-t) + 4 = 0

⇔ 6t + 6 = 0 ⇔ t = -1 ⇒ M(-3;1;1)

Mặt phẳng (P) có vectơ pháp tuyến  

Đường thẳng ∆ có vectơ chỉ phương 

Đường thẳng d đi qua điểm M(-3;1;1) và có vectơ chỉ phương là  a d → .

Vậy phương trình tham số của d là  x = - 3 + t y = 1 - 2 t z = 1 - t

5 tháng 5 2018

Chọn C.

*) Gọi A = d1 ∩ (α)

A ∈ d1 ⇒ A(2-a;1+3a;1+2a)

Mà điểm A thuộc mp(α) nên thay tọa độ điểm A vào phương trình mặt phẳng ta được

(2 - a) + 2(1 + 3a) – 3(1 + 2a) – 2= 0

2 – a + 2 + 6a – 3 – 6a – 2 = 0

⇒ a = -1 ⇒ A(3;-2;-1)

*) Gọi B = d2 ∩ (α)

B ∈ d2 ⇒ B(1-3b;-2+b;-1-b)

Mà điểm B thuộc mp(α) nên thay tọa độ điểm B vào phương trình mặt phẳng ta được:

(1 - 3b) + 2(-2 + b) - 3(-1 - b) - 2 = 0

1- 3b – 4 + 2b + 3 + 3b - 2 = 0

⇔ 2b - 2 = 0 ⇔ b = 1 ⇒ B(-2;-1;-2)

*) Đường thẳng d đi qua điểm A(3;-2;-1) và có vectơ chỉ phương  

Vậy phương trình chính tắc của d là  x - 3 - 5 = y + 2 1 = z + 1 - 1

18 tháng 6 2019

Chọn A.

Gọi ∆ là đường thẳng cần tìm

Đường thẳng d có vecto chỉ phương  a d → = 0 ; 1 ; 1

Ta có A(2;3;3); B(2;2;2)

∆ đi qua điểm A(2;3;3) và có vectơ chỉ phương 

Vậy phương trình của ∆ là

14 tháng 8 2019

Chọn A.

Ta có A(2;3;3); B(2;2;2)

Δ đi qua điểm A(2;3;3) và có vectơ chỉ phương  A B → = 0 ; - 1 ; 1

Vậy phương trình của ∆ là x = 2 y = 3 - t z = 3 - t

28 tháng 11 2018
26 tháng 8 2018

19 tháng 8 2017