Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C
Giả sử B (0;b;0) và C (0;0;c), với b, c > 0.
Khi đó phương trình mặt phẳng (α) là:
Chọn D
Phương trình mặt chắn cắt tia Ox tại A (a; 0; 0), cắt tia Oy tại B (0; b; 0), cắt tia Oz C (0; 0; c) tại có dạng là (với a > 0, b > 0, c > 0).
Vì M (1; 3; -2) nằm trên mặt phẳng (P) nên ta có:
Khi đó a = 2, c = 8.
Vậy phương trình mặt phẳng (P) là:
Câu 1:
Do \(MA=MB\Rightarrow M\) là trung điểm AB
Gọi \(B\left(a;0;0\right)\) \(\Rightarrow\left\{{}\begin{matrix}x_A=2x_M-x_B=6-a\\y_A=2y_M-y_B=4\\z_A=2z_M-z_B=2\end{matrix}\right.\)
Mà \(A\in\left(Q\right)\)
\(\Rightarrow6-a+4+2-7=0\Rightarrow a=5\)
\(\Rightarrow\left\{{}\begin{matrix}B\left(5;0;0\right)\\A\left(1;4;2\right)\end{matrix}\right.\) \(\Rightarrow AB=6\)
Câu 2:
Gọi (Q) là mặt phẳng chứa A và song song (P)\(\Rightarrow d\in\left(Q\right)\)
Phương trình (Q):
\(2\left(x-1\right)+1\left(y-2\right)-4\left(z-3\right)=0\)
\(\Leftrightarrow2x+y-4z+8=0\)
Giao điểm B của (Q) và trục Ox: \(2x+8=0\Rightarrow x=-4\) \(\Rightarrow B\left(-4;0;0\right)\)
\(\Rightarrow d\) nhận \(\overrightarrow{u_d}=\overrightarrow{BA}=\left(5;2;3\right)\) là một vtcp
Phương trình d: \(\left\{{}\begin{matrix}x=-4+5t\\y=2t\\z=3t\end{matrix}\right.\)
Chọn A
Mặt phẳng (P) chứa đường tròn (C) (giao của 2 mặt cầu đã cho) có phương trình là: 6x + 3y + 2z = 0
Mặt phẳng (P) có phương trình là:
Do đó (P) // (ABC). Mặt cầu (S) tiếp xúc với cả ba đường thẳng AB, BC, CA sẽ giao với mặt phẳng (ABC) theo một đường tròn tiếp xúc với ba đường thẳng AB, BC, CA.
Trên mặt phẳng (ABC) có 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA đó là đường tròn nội tiếp tam giác ABC và ba đường tròn bàng tiếp các góc A, B, C. Do đó có 4 mặt cầu có tâm nằm trên (P) và tiếp xúc với cả ba đường thẳng AB, BC, CA. Tâm của 4 mặt cầu là hình chiếu của tâm 4 đường tròn tiếp xúc với ba đường thẳng AB, BC, CA lên mặt phẳng (P).
Chọn D
Gọi A (a;0;0), B (0;b;0), C (0;0;c), do A, B, C thuộc ba tia Ox, Oy, Oz nên a, b, c > 0.
Chọn B
Ta có A, B cùng nằm về một phía của (P). Gọi A' đối xứng với A qua (P) suy ra A' (-2; 2; 1). Ta có MA + MB = MA' + MB ≥ BA'. Dấu bằng xảy ra khi M là giao điểm của BA' và (P). Xác định được . Suy ra Chọn B
Đáp án B
Phương pháp
Gọi A(a;0;0), B(0;b;0), C(0;0;c) (a,b,c>0) =>OA =a, OB =b, OC=c
Viết phương trình mặt phẳng (P)
Cách giải :
Gọi A(a;0;0), B(0;b;0), C(0;0;c) (a,b,c>0) =>OA =a, OB =b, OC=c
Khi đó phương trình mặt phẳng (P) là
Vậy phương trình mặt phẳng (P) là