K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2017

Đáp án D.

Phương pháp:

Gọi n → a ; b ; c ,   n → ≠ 0 →  là một VTPT của α .  Viết phương trình mặt phẳng  α .

Sử dụng các giả thiết O ∈ α ;   A ∈ α ;   d B ; α = 3  lập hệ phương trình tìm a, b, c.

Cách giải:

Gọi n → a ; b ; c ,   n → ≠ 0 →  là một VTPT của  α .

O 0 ; 0 ; 0 ∈ α ⇒ α : a x + b y + c z = 0  

A 1 ; 1 ; 0 ∈ α ⇒ a + b = 0 ⇒ b = − a ⇒ α : a x − a y + c z = 0  

d B ; α = 3 ⇔ a .0 − a . − 1 + 2 c 2 a 2 + c 2 = 3 ⇔ a + 2 c 2 a 2 + c 2 = 3  

  ⇔ a + 2 c 2 = 3 2 a 2 + c 2 ⇔ a 2 + 4 a c + 4 c 2 = 6 a 2 + 3 c 2 ⇔ 5 a 2 − 4 a c − c 2 = 0

Cho

a = 1 ⇒ c 2 + 4 c − 5 = 0 ⇔ c = 1 c = − 5 ⇒ n → 1 ; − 1 ; 1

hoặc n → 1 ; − 1 ; − 5 .  

 

15 tháng 3 2019

Đáp án D

27 tháng 6 2019

Đáp án D

Ta có u A B → = n P → ; n Q → = - 8 ; 11 ; 23  

Do đó A B →  cùng phương với vecto  u → = 8 ; - 11 ; - 23 .

13 tháng 7 2017

Đáp án D

Mặt phẳng cần tìm sẽ vuông góc với (ABM). Một vecto pháp tuyến của nó là tích có hướng của vecto pháp tuyến mặt phẳng (ABM) và A B →  

Cũng có thể làm như sau: Khoảng cách lớn nhất là MH với H là hình chiếu vuông góc của M lên đường thẳng AB. Ta tìm được H ( 3 ; − 3 ; − 10 ) .

15 tháng 10 2017

25 tháng 10 2017

Đáp án A.

16 tháng 11 2017

Chọn đáp án C

22 tháng 8 2018

Kiểm tra ta thấy d cắt (P).

Đường thẳng cần tìm là giao tuyến của mặt phẳng  với mặt phẳng (P).

Trong đó mặt phẳng α đi qua điểm A và vuông góc với đường thẳng AH, điểm H là hình chiếu của A trên đường thẳng d.

24 tháng 8 2019

11 tháng 3 2017

Đáp án B