K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2019

Chọn D

Mặt phẳng (P) vuông góc với đường thẳng d nên (P) nhận vecto chỉ phương của d là một vecto pháp tuyến. Ta có phương trình mặt phẳng (P) là

15 tháng 11 2017

Đáp án D

Gọi phương trình đường thẳng là 

Vì nằm trong mặt phẳng  (P)

Góc giữa hai đường thẳng và Oz là  

Ta có  

Khi  cos α lớn nhất  ⇒   α   nhỏ nhất và bằng  a r cos 6 3 . Xảy ra khi  b = 2 c = 2 a

Do đó, phương trình đường thẳng  là 

5 tháng 1 2020

7 tháng 9 2019

Đáp án C

HD: Gọi H(1+2t;-1+t;2-t) là hình chiếu của A trên d

 

Suy ra H(3;0;1), phương trình đường thẳng AH là 

28 tháng 4 2019

Đáp án D

Chỉ có đáp án D đi qua A

25 tháng 8 2018

 

25 tháng 3 2019

Đáp án D

Vectơ chỉ phương của đường thẳng d là

Mà đường thẳng d qua M(1;1;2) nên phương trình d:  x - 1 2 = y - 1 - 1 = z - 2 3

8 tháng 4 2016


B C A D H K J S

Kẻ \(SH\perp AC\left(H\in AC\right)\)

Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)

\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)

\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)

\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)

Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)

Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)

Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)

\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)

Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)

1 tháng 11 2019

Chọn D.

Vì M thuộc ∆ nên tọa độ M(-2+t;2 t;-t)

Mà điểm M thuộc mp (P) thay tọa độ điểm M vào phương trình mp(P) ta được:

-2 + t + 2(2 + t) - 3.(-t) + 4 = 0

⇔ 6t + 6 = 0 ⇔ t = -1 ⇒ M(-3;1;1)

Mặt phẳng (P) có vectơ pháp tuyến  

Đường thẳng ∆ có vectơ chỉ phương 

Đường thẳng d đi qua điểm M(-3;1;1) và có vectơ chỉ phương là  a d → .

Vậy phương trình tham số của d là  x = - 3 + t y = 1 - 2 t z = 1 - t