K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 cho số phức z=a+bi (b>0) thỏa z+\(\overline{z}\) =10 và /z/ =13. giá trị của a+b là 2 pt z^2+ax+b=0,(a,b\(\in\) R) có một nghiệm z=-2+i .giá trị của a-b la 3 gọi z1,z2 là hai nghiệm phức của pt z^2+2z+8=0, trong đó z1 có phần ảo dương . số phức w=(2z1+z2).\(\overline{z}_1\) là 4 kí hiệu z1,z2, z3 va z4 là bốn nghiệm phức của pt z^4-z^2-12=0. giá trị của T=/z1/+/z2/+/z3/+/z4/ bằng 5 trong ko gian hệ tọa độ oxyz, cho...
Đọc tiếp

1 cho số phức z=a+bi (b>0) thỏa z+\(\overline{z}\) =10 và /z/ =13. giá trị của a+b là

2 pt z^2+ax+b=0,(a,b\(\in\) R) có một nghiệm z=-2+i .giá trị của a-b la

3 gọi z1,z2 là hai nghiệm phức của pt z^2+2z+8=0, trong đó z1 có phần ảo dương . số phức w=(2z1+z2).\(\overline{z}_1\)

4 kí hiệu z1,z2, z3 va z4 là bốn nghiệm phức của pt z^4-z^2-12=0. giá trị của T=/z1/+/z2/+/z3/+/z4/ bằng

5 trong ko gian hệ tọa độ oxyz, cho 2 điểm M(3;-2;1),N(0;1;-1). tìm độ dài của đoạn thẳng

6 trong ko gian với tọa độ oxyz. cho 2 điểm A(-3;1;-4 va B(1;-1;2). pt mặt cầu S nhận AB làm đường kính là

7 trong ko gian vói hệ tọa độ oxyz, viết pt mặt cầu tâm I(3;2;4) và tiếp xúc với trục oy là

8 pt mặt cầu S tâm I(1;3;5) và tiếp cú với đường thẳng \(\frac{x}{1}=\frac{y+1}{-1}=\frac{z-2}{-1}\)

9 trong không gian với hệ tọa độ oxyz , cho điểm I(-1;0;0) và đường thẳng d:\(\left\{{}\begin{matrix}x=2+t\\y=1+2t\\z=1+t\end{matrix}\right.\) pt mặt cầu S có tâm I và tiếp xúc với đường thẳng d là

10 trong ko gian với hệ tọa độ oxyz, cho 2 điểm A(1;2;2),B(3;-2-0). viết pt mặt phẳng trung trực đoạn AB

11 trong ko gian với hệ tọa độ oxyz, cho 2 điểm A(4;0;1) và B(-2;2;3). pt mặt phẳng trung trực đoạn AB là

12 trong ko gian oxyz, mặt phẳng \(\alpha\) đi qua gốc tọa độ(0;0;0) va2 co1 vecto phap tuyen n=(6;3;-2) thi co pt ?

13 trong ko gian oxyz , cho 2 điểm A(1;-2;4) B(2;1;2). viết pt mặt phẳng (P) vuông góc với đường AB tại điểm A LÀ

14 Trong ko gian với hệ tọa độ oxyz ,mp qua A(2;3;1) và B(0;1;2).pt mặt phẳng (P) đi qua A và vuông góc AB là

15 trong ko gian hệ tọa độ oxyz, ,p đi qua điểm A (2;-3;-2) và có vecto pháp tuyến \(\overline{n}\)=(2;-5;1) có pt là

16 viết pt mặt phẳng (P) qua A (1;1;1) vuông góc với hai mp \(\alpha\) :x+y-z-2=0 \(\beta\) x-y+z-1=0

17 trong ko gian với hệ tọa độ oxyz cho hai mp(p):x-y+z=0,(Q):3x+2y-12z+5=0 , viết pt mặt phẳng (R) đi qua O và vuông góc với (P),(Q)

18 trong ko gian hệ tạo độ oxyz, mp(Q) đi qua 3 điểm ko thẳng hang M(2;2;0),N(2;0;3),P(0;3;3) có pt là

19 trong ko gian với hệ tọa độ oxyz cho mặt phẳng \(\alpha\) cắt 3 trục tọa M (3;0;0),N(0;-4;0) ,P(0;0;-2). pt mặt phẳng \(\alpha\)?

20 rong ko gian với hệ tọa độ oxyz , cho ba điểm A(1;0;0),B(0;2;0)C(0;0;3). HỎI MẶT MẶT PHẲNG NÀO DƯỚI ĐÂY ĐI QUA BA ĐIỂM A,B VÀ C

A (q) X/3+Y/2+Z/3=1 B (S)X+2Y+3Z=-1

C (P) X/1+Y/2+Z/3=0 D (r):X+2Y+3Z=1

7
NV
16 tháng 5 2020

19.

Phương trình mặt phẳng theo đoạn chắn:

\(\frac{x}{3}+\frac{y}{-4}+\frac{z}{-2}=1\)

\(\Leftrightarrow4x-3y-6z-12=0\)

20.

Phương trình mặt phẳng (ABC) theo đoạn chắn:

\(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)

\(\Leftrightarrow6x+3y+2z-6=0\)

Chẳng đáp án nào đúng cả, chắc bạn ghi nhầm đáp án C số 1 thành số 0 :)

NV
16 tháng 5 2020

15.

\(2\left(x-2\right)-5\left(y+3\right)+1\left(z+2\right)=0\)

16.

\(\overrightarrow{n_1}=\left(1;1;-1\right)\) ; \(\overrightarrow{n_2}=\left(1;-1;1\right)\)

\(\left[\overrightarrow{n_1};\overrightarrow{n_2}\right]=\left(0;-2;-2\right)=-2\left(0;1;1\right)\)

Phương trình (P):

\(1\left(y-1\right)+1\left(z-1\right)=0\Leftrightarrow y+z-2=0\)

17.

\(\overrightarrow{n_P}=\left(1;-1;1\right)\) ; \(\overrightarrow{n_Q}=\left(3;2;-12\right)\)

\(\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(10;15;5\right)=5\left(2;3;1\right)\)

Phương trình mặt phẳng (R):

\(2x+3y+z=0\)

18.

\(\overrightarrow{MN}=\left(0;-2;3\right);\overrightarrow{MP}=\left(-2;1;3\right)\)

\(\left[\overrightarrow{MN};\overrightarrow{MP}\right]=\left(-9;-6;-4\right)=-1\left(9;6;4\right)\)

Phương trình:

\(9\left(x-2\right)+6\left(y-2\right)+4z=0\)

\(\Leftrightarrow9x+6y+4z-30=0\)

6 tháng 5 2020

à xl bạn ngheennn

\n\n

\n
NV
6 tháng 5 2020

Câu 28:

\(\overrightarrow{CB}=\left(1;-1;1\right)\)

Do (P) vuông góc BC nên nhận (1;-1;1) là 1 vtpt

Phương trình (P):

\(1\left(x-1\right)-1\left(y-1\right)+1\left(z+5\right)=0\)

\(\Leftrightarrow x-y+z+5=0\)

Câu 29:

Mạt phẳng (Q) nhận \(\left(1;-2;3\right)\) là 1 vtpt nên nhận các vecto có dạng \(\left(k;-2k;3k\right)\) cũng là các vtpt với \(k\ne0\)

Do đó đáp án B đúng (ko tồn tại k thỏa mãn)

Với đáp án A thì \(k=-2\) , đáp án C thì \(k=3\), đáp án D có \(k=1\)

1 trong không gian với trục tọa độ oxyz, cho điểm I(1;3;-2) và đường thẳng d \(\frac{x-4}{1}=\frac{y-4}{2}=\frac{z+3}{-1}\) viết pt mặt cầu (s) có tâm I và cắt d tại hai điểm phân biệt A Và B sao cho AB có độ dài bằng 4 2 trong không gian hệ trục tọa độ oxyz, tâm và bán kính mặt cầu (S) có pt(x-2)^2+(y+2)^+z^2=121 là 3 cho pt \(x^4+x^2-6=0\) .Pt đã cho có nghiệm trên tập số phức là 4 trong không gian với hệ...
Đọc tiếp

1 trong không gian với trục tọa độ oxyz, cho điểm I(1;3;-2) và đường thẳng d \(\frac{x-4}{1}=\frac{y-4}{2}=\frac{z+3}{-1}\) viết pt mặt cầu (s) có tâm I và cắt d tại hai điểm phân biệt A Và B sao cho AB có độ dài bằng 4

2 trong không gian hệ trục tọa độ oxyz, tâm và bán kính mặt cầu (S) có pt(x-2)^2+(y+2)^+z^2=121 là

3 cho pt \(x^4+x^2-6=0\) .Pt đã cho có nghiệm trên tập số phức là

4 trong không gian với hệ tạo độ oxyz, cho điểm M(2;3;-1) và đường thảng d \(\frac{x-4}{1}=\frac{y-1}{-2}=\frac{z-5}{2}\). tọa độ hình chiếu vuong góc của M trên( d)là

5 trong không gian oxyz, cho mp(p) 2x+3y+z-11=0. mặt cầu(S) có tâm I (1;-2;1) cà tiếp xúc zới (p) tại H . tọa độ điểm H là

6 pt mặt cầu có tâm I(1;2;3) và tiếp xúc với mp (oxz) là

7 trong khong gian với hệ dợ độ oxyz, mp(Q) có p x-2y+3z-1=0 trong các vecto sau, vecto nào ko phải là một vecto pháp tuyến của mp(Q)

A \(\overline{n}\)(3;-6;9) B (-2;4;-6) C(1;-4;9) D(1;-2-3)

3
NV
12 tháng 5 2020

6.

Mặt phẳng Oxz có pt: \(y=0\)

Khoảng cách từ I đến Oxz: \(d\left(I;Oxz\right)=\left|y_I\right|=2\)

\(\Rightarrow R=2\)

Phương trình mặt cầu:

\(\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=4\)

7.

Mặt phẳng (Q) nhận \(\left(1;-2;3\right)\) là 1 vtpt nên cũng nhận các vecto có dạng \(\left(k;-2k;3k\right)\) là vtpt

Bạn có ghi nhầm đề bài ko nhỉ? Thế này thì cả C và D đều ko phải vecto pháp tuyến của (Q)

NV
12 tháng 5 2020

4.

Đường thẳng d nhận \(\left(1;-2;2\right)\) là 1 vtcp

Gọi (P) là mặt phẳng qua M và vuông góc d \(\Rightarrow\) (P) nhận \(\left(1;-2;2\right)\) là 1 vtpt

Phương trình (P): \(1\left(x-2\right)-2\left(y-3\right)+2\left(z+1\right)=0\)

\(\Leftrightarrow x-2y+2z+6=0\)

Pt d dạng tham số: \(\left\{{}\begin{matrix}x=4+t\\y=1-2t\\z=5+2t\end{matrix}\right.\)

Tọa độ hình chiếu M' của M lên d là giao của d và (P) nên thỏa mãn:

\(4+t-2\left(1-2t\right)+2\left(5+2t\right)+6=0\) \(\Rightarrow t=-2\)

\(\Rightarrow M'\left(2;5;1\right)\)

5.

(P) nhận \(\left(2;3;1\right)\) là 1 vtpt

Gọi d là đường thẳng qua I và vuông góc (P)

\(\Rightarrow\) d nhận \(\left(2;3;1\right)\) là 1 vtcp

Phương trình tham số d: \(\left\{{}\begin{matrix}x=1+2t\\y=-2+3t\\z=1+t\end{matrix}\right.\)

H là giao điểm của d và (P) nên tọa độ thỏa mãn:

\(2\left(1+2t\right)+3\left(-2+3t\right)+1+t-11=0\) \(\Rightarrow t=1\)

\(\Rightarrow H\left(3;1;2\right)\)

28 tháng 5 2021

\(d:\frac{x}{1}=\frac{y+1}{2}=\frac{z-1}{-2}\) có VTCP \(\overrightarrow{u}\left(1;2;-2\right)\)

Mặt phẳng \(\left(Oxz\right)\)có VTPT \(\overrightarrow{j}\left(0;1;0\right)\)

Mặt phẳng (P) chứa d và vuông góc với (Oxz) nên VTPT của (P) là:

\(\overrightarrow{n}=\left[\overrightarrow{u},\overrightarrow{j}\right]=\left(2;0;1\right)\)

Mặt phẳng (P): điểm \(M\left(0;-1;1\right)\in d\subset\left(P\right)\), VTPT \(\overrightarrow{n}\left(2;0;1\right)\)

\(\Rightarrow\left(P\right):2x+z-1=0\)

8 tháng 4 2016


B C A D H K J S

Kẻ \(SH\perp AC\left(H\in AC\right)\)

Do \(\left(SAC\right)\perp\left(ABCD\right)\Rightarrow SH\perp\left(ABCD\right)\)

\(SA=\sqrt{AC^2-SC^2}=a;SH=\frac{SA.SC}{AC}=\frac{a\sqrt{3}}{2}\)

\(S_{ABCD}=\frac{AC.BD}{2}=2a^2\)

\(V_{S.ABCD}=\frac{1}{3}SH.S_{ABCD}=\frac{1}{3}.\frac{a\sqrt{3}}{2}.2a^2=\frac{a^3\sqrt{3}}{3}\)

Ta có \(AH=\sqrt{SA^2-SH^2}=\frac{a}{2}\Rightarrow CA=4HA\Rightarrow d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Do BC//\(\left(SAD\right)\Rightarrow d\left(B,\left(SAD\right)\right)=d\left(C,\left(SAD\right)\right)=4d\left(H,\left(SAD\right)\right)\)

Kẻ \(HK\perp AD\left(K\in AD\right),HJ\perp SK\left(J\in SK\right)\)

Chứng minh được \(\left(SHK\right)\perp\left(SAD\right)\) mà \(HJ\perp SK\Rightarrow HJ\perp\left(SAD\right)\Rightarrow d\left(H,\left(SAD\right)\right)=HJ\)

Tam giác AHK vuông cân tại K\(\Rightarrow HK=AH\sin45^0=\frac{a\sqrt{2}}{4}\)

\(\Rightarrow HJ=\frac{SH.HK}{\sqrt{SH^2+HK^2}}=\frac{a\sqrt{3}}{2\sqrt{7}}\)

Vậy \(d\left(B,\left(SAD\right)\right)=\frac{2a\sqrt{3}}{\sqrt{7}}=\frac{2a\sqrt{21}}{7}\)

5 tháng 4 2016

Mặt cầu (S) có tâm I(-2;-1;1) và bán kính \(R=\sqrt{5}\)

Gọi r là bán kinh đường tròn thiết diện, theo giả thiết ta có : \(S=\pi\Leftrightarrow r^2.\pi=\pi\Rightarrow r=1\)

Gọi d là khoảng cách từ I đến mặt phẳng \(\alpha\), ta có \(d^2=R^2-r^2=5-1\Rightarrow d=2\)

Mặt phẳng  \(\alpha\), qua N (0;-1;0) có dạng \(Ax+B\left(y+1\right)+Cz=0\Leftrightarrow Ax+By+Cz+B=0\left(A^2+B^2+C^2\ne0\right)\)

Mặt khác,  \(\alpha\)  qua M(1;-1;1) nên thỏa mãn \(A+C=0\Rightarrow\text{ }\) \(\alpha:Ax+By-Az+B=0\)

Vì \(d=d\left(I,\alpha\right)=\frac{\left|-3A\right|}{\sqrt{2A^2+B^2}}=2\Leftrightarrow A^2=4B^2\Rightarrow\frac{A}{B}=\pm2\) vì \(A^2+B^2+C^2\ne0\)

Do đó có 2 mặt phẳng  \(\alpha\), cần tìm là \(2x+y-2z+1=0\) và \(2x-y-2z-1=0\)

AH
Akai Haruma
Giáo viên
11 tháng 2 2017

Lời giải:

Gọi tọa độ của \(M=(a,b,c)\)

\(M\in (\Delta)\Rightarrow \frac{a-2}{-3}=\frac{b}{1}=\frac{c+1}{2}=t\)

\(\Rightarrow\left\{\begin{matrix}a=-3t+2\\b=t\\c=2t-1\end{matrix}\right.\)

Mặt khác \(M\in (P)\Rightarrow a+2b-3c+2=0\)

\(\Leftrightarrow -3t+2+2t-3(2t-1)+2=0\)

\(\Leftrightarrow -7t+7=0\Rightarrow t=1\)

Do đó \(M(-1,1,1)\)

AH
Akai Haruma
Giáo viên
6 tháng 7 2017

Lời giải:

Dễ thấy đường thẳng $d_1$ đi qua điểm \(M(1,-1,0)\Rightarrow \overrightarrow{MA}=(4,-2,5)\)

Khi đó, nếu $(P)$ là mp chứa \(d_1,MA\) thì \(\overrightarrow{n_P}=[\overrightarrow{d_1},\overrightarrow{MA}]=(1,-3,-2)\)

\(\Rightarrow \text{PTMP}: x-3y-2z-4=0\)

Ta thấy \(C\in (d_2),C\in (P)\Rightarrow \) dễ dàng tìm được tọa độ điểm \(C(-1,-1,-1)\)

Lại có \(B=AC\cap d_1\). Và PTĐT \(AC\): \(\frac{x+1}{3}=\frac{y+1}{-1}=\frac{z+1}{3}\)

\(\Rightarrow B(2,-2,2)\)

Do đó \(BC=\sqrt{19}\)