K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 6 2018

Đáp án D

Ta có

P : x + m y + 2 m + 1 z − 2 − m = 0 ⇔ x + z − 2 + m y + 2 z − 1 = 0  

⇒ P luôn đi qua đường thẳng cố định

  d : x + z − 2 = 0 y + 2 z − 1 = 0 . d A ; P m ax = d A ; d

Lại có

H ∈ d : x = 2 − t y = 1 − 2 t z = t ⇒ u → d = − 1 ; − 2 ; 1  

và H 2 − t ; 1 − 2 t ; t .

Suy ra

A H → . u → d = 0 ⇔ t + 4 t + t − 3 = 0 ⇔ t = 1 2 .  

Vậy  H 3 2 ; 0 ; 1 2 .

26 tháng 1 2019

27 tháng 12 2017

30 tháng 3 2019

31 tháng 1 2017

Đáp án là C

23 tháng 2 2018

 

Đáp án D

Vì A, B, C lần lượt là hình chiếu vuông góc của M trên trục Ox, Oy, Oz nên:  A − 3 ; 0 ; 0 B 0 ; 2 ; 0 C 0 ; 0 ; 4

Em có M’ là hình chiếu song song của M trên (ABC) 

 

7 tháng 9 2018

Đáp án D

Vì A, B, C lần lượt là hình chiếu vuông góc của M trên trục Ox, Oy, Oz nên:  A − 3 ; 0 ; 0 B 0 ; 2 ; 0 C 0 ; 0 ; 4

Em có M’ là hình chiếu song song của M trên (ABC) 

12 tháng 6 2017

Đáp án A

Vì  M ∈ d  nên  M t + 3 ; − t − 2 ; 2 t + 1 ,   t ∈ ℝ

Đường thẳng  Δ  có vtcp  u Δ → = − 1 ; 2 ; − 3 .

Đường thẳng  d ' : qua   M t + 3 ; − t − 2 ; 2 t + 1 vtcp   u d ' → = u Δ → = − 1 ; 2 ; − 3

⇒ d ' : x − t + 3 − 1 = y + t + 2 2 = z − 2 t + 1 − 3

M’ là hình chiếu song song của M trên (P)

⇒ M ' = d ' ∩ P ⇒ M ' 5 9 t + 2 ; − 1 9 t ; 2 3 t − 2 .

19 tháng 3 2016

a) Xét đường thẳng d qua M và d ⊥ (α).

Khi đó H chính là giao điểm của d và  (α). 

Vectơ (1 ; 1 ; 1) là vectơ pháp tuyến của (α) nên  là vectơ chỉ phương của d.

Phương trình tham số của đường thẳng d có dạng:    .

Thay tọa độ x ; y ; z của phương trình trên vào phương trình xác định (α), ta có:

3t + 6 = 0 => t = -2 => H(-1 ; 2 ; 0).

b) Gọi M'(x ; y ; z) là điểm đối xứng của M qua mặt phẳng (α), thì hình chiếu vuông góc H của M xuống (α) chính là trung điểm của MM'.

Ta có: 

 => x = -3 ;

    => y = 0 ;

    => z = -2.

Vậy M'(-3 ; 0 ;2).

c) Tính khoảng cách từ điểm M đến mặt phẳng (α) bằng 2 cách sau:

Cách 1: Áp dụng công thức ta có:

.

Cách 2: Khoảng cách từ M đến (α) chính là khoảng cách MH:

      d(M,(α) )= MH = .


 

26 tháng 12 2017

D địa trung hải

18 tháng 4 2016

a) Xét đường thẳng d qua M và d ⊥ (α).

Khi đó H chính là giao điểm của d và  (α). 

Vectơ (1 ; 1 ; 1) là vectơ pháp tuyến của (α) nên  là vectơ chỉ phương của d.

Phương trình tham số của đường thẳng d có dạng:    .

Thay tọa độ x ; y ; z của phương trình trên vào phương trình xác định (α), ta có:

3t + 6 = 0 => t = -2 => H(-1 ; 2 ; 0).

b) Gọi M'(x ; y ; z) là điểm đối xứng của M qua mặt phẳng (α), thì hình chiếu vuông góc H của M xuống (α) chính là trung điểm của MM'.

Ta có: 

 => x = -3 ;

    => y = 0 ;

    => z = -2.

Vậy M'(-3 ; 0 ;2).

c) Tính khoảng cách từ điểm M đến mặt phẳng (α) bằng 2 cách sau:

Cách 1: Áp dụng công thức ta có:

.

Cách 2: Khoảng cách từ M đến (α) chính là khoảng cách MH:

      d(M,(α) )= MH = .