K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 6 2017

 Đáp án A

Phương pháp giải:

Tìm tọa độ tâm đường tròn ngoại tiếp tam giác OMN bằng tính chất đường phân giác

Vectơ chỉ phương của

Kẻ phân giác OF (F ∈ MN) ta có:

Gọi I là tâm đường tròn nội tiếp tam giác OMN 

Tam giác OMN vuông tại O, có bán kính đường tròn nội tiếp r=2 => OI = 2

Phương trình đường thẳng  là 

 đi qua I(0;1;1)

Khoảng cách từ E đến đường thẳng  ∆ là 

9 tháng 7 2018

Chọn B

Gọi I là tâm đường tròn nội tiếp tam giác OMN.

Ta áp dụng tính chất sau: “Cho tam giác OMN với I là tâm đường tròn nội tiếp, ta có  với a = MN, b = ON, c = OM”. 

Ta có:

Mặt phẳng (Oxz) có phương trình y = 0.

Mặt cầu tiếp xúc với mặt phẳng (Oxz) nên mặt cầu có bán kính R = d (I, (Oxz)) = 1.

Vậy phương trình mặt cầu là x²+ (y-1)²+ (z-1)²=1.

8 tháng 7 2018

Chọn A

 

Tâm I của đường tròn ngoại tiếp tam giác là trung điểm của BC => I (0; 2; 0)

Đường thẳng d cần tìm đi qua I (0; 2; 0) và nhận vectơ  làm véc tơ chỉ phương. Phương trình chính tắc của đường thẳng d là 

19 tháng 5 2018

2 tháng 2 2017

16 tháng 10 2017

3 tháng 5 2018

Chọn D

Xét hàm số:

Do đó d (B; d) nhỏ nhất khi f(t) đạt giá trị nhỏ nhất bằng 27 tại t = 2/3. Suy ra . Chọn một vectơ chỉ phương của đường thẳng d là

Vậy phương trình đường thẳng 

29 tháng 4 2017

Đáp án B.

Gọi (P) là mặt phẳng qua M và vuông góc với d.Phương trình của 

Gọi H,K lần lượt là hình chiếu vuông góc cùa A trên ∆,(P)

Ta có: K(-3;-2;-1), 

 Vậy khoảng cách từ A đến  bé nhất khi A đi qua M,K.

có vectơ chỉ phương 

29 tháng 8 2018

Chọn A

Cách 1:

 

 

Cách 2: Ta có  nên hai mặt cầu cắt nhau theo một đường tròn giao tuyến.

 

Gọi I = AB ∩ (α) với (α) là mặt phẳng thỏa mãn bài toán.

Hạ  vuông góc với mặt phẳng .

Khi đó ta có I nằm ngoài AB và B là trung điểm AI 

Suy ra I (2;1;2). Gọi (α): a(x-2) + b(y-1) + c(z-2) = 0.

Vì (α) // CD   nên ta có 2a + b - 2c = 0 => b = 2c - 2a

Ta có hai trường hợp:

Nếu b = -2c; a = 2c => (α): 2c (x-2) + 2c (y-1) + c(z-2) = 0 => 2x - 2y + z - 4 = 0

Mặt khác CD // (α) nên CD ∉ (α) loại trường hợp trên.

Nếu b = c;  a = c/2 =>  (α): c/2 . (x-2) + c (y-1) + c(z-2) = 0 => x + 2y + 2z - 8 = 0

Kiểm tra thấy CD ∉ (α) nên nhận trường hợp này. Vậy (α): x + 2y + 2z - 8 = 0