Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Phương pháp:
(P)// α => Phương trình mặt phẳng (P) có dạng 4x+3y-12z+D=0 (D khác 10)
(P) tiếp xúc với (S) => d(I;(P))= R với I; R là tâm và bán kính mặt cầu (S) .
Cách giải:
Gọi mặt phẳng là mặt phẳng cần tìm.
(P)// α =>Phương trình mặt phẳng có dạng 4x+3y-12z+D=0 (D khác 10)
Mặt cầu (S) có tâm I(1;2;3), bán kính R=4
Vậy mặt phẳng (P) thỏa mãn yêu cầu bài toán có phương trình
Đáp án D
Trung điểm của là:
=>PT mặt phẳng trung trực của đoạn AB qua I và vuông góc với AB có PT là: y =0
Đáp án B
Phương trình mặt phẳng (Q) có dạng: x - 2y - 3z + m = 0 (m ≠ 10).
Vì (Q) đi qua điểm A(2; -1; 0) nên ta có 2 + 2 + m = 0 <=> m = -4.
Vậy phương trình mặt phẳng (Q) là x - 2y - 3z -4 = 0 hay -x + 2y + 3z + 4 = 0.
Đáp án D
Đường thẳng d vuông góc với mặt phẳng (α) nên nhận véc-tơ làm véc-tơ chỉ phương.
Suy ra, phương trình đường thẳng d: .
Đáp án B
Vì đường thẳng vuông góc với (P) nên nhận vecto pháp tuyến của (P) là (1; 3; -1) làm vecto chỉ phương nên chỉ có đáp án B hoặc C
Thay điểm A (2;3;0) vào thì chỉ có đáp án B thỏa mãn
19.
Phương trình mặt phẳng theo đoạn chắn:
\(\frac{x}{3}+\frac{y}{-4}+\frac{z}{-2}=1\)
\(\Leftrightarrow4x-3y-6z-12=0\)
20.
Phương trình mặt phẳng (ABC) theo đoạn chắn:
\(\frac{x}{1}+\frac{y}{2}+\frac{z}{3}=1\)
\(\Leftrightarrow6x+3y+2z-6=0\)
Chẳng đáp án nào đúng cả, chắc bạn ghi nhầm đáp án C số 1 thành số 0 :)
15.
\(2\left(x-2\right)-5\left(y+3\right)+1\left(z+2\right)=0\)
16.
\(\overrightarrow{n_1}=\left(1;1;-1\right)\) ; \(\overrightarrow{n_2}=\left(1;-1;1\right)\)
\(\left[\overrightarrow{n_1};\overrightarrow{n_2}\right]=\left(0;-2;-2\right)=-2\left(0;1;1\right)\)
Phương trình (P):
\(1\left(y-1\right)+1\left(z-1\right)=0\Leftrightarrow y+z-2=0\)
17.
\(\overrightarrow{n_P}=\left(1;-1;1\right)\) ; \(\overrightarrow{n_Q}=\left(3;2;-12\right)\)
\(\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(10;15;5\right)=5\left(2;3;1\right)\)
Phương trình mặt phẳng (R):
\(2x+3y+z=0\)
18.
\(\overrightarrow{MN}=\left(0;-2;3\right);\overrightarrow{MP}=\left(-2;1;3\right)\)
\(\left[\overrightarrow{MN};\overrightarrow{MP}\right]=\left(-9;-6;-4\right)=-1\left(9;6;4\right)\)
Phương trình:
\(9\left(x-2\right)+6\left(y-2\right)+4z=0\)
\(\Leftrightarrow9x+6y+4z-30=0\)
Đáp án D.
Gọi I là trung điểm của AB. Ta có:
Mặt phẳng trung thực của đoạn thẳng AB có phương trình là: