Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
I là hình chiếu của M lên Ox nên I ∈ O x
Ta có: , ( với là vecto chỉ phương của Ox )
Vậy phương trình mặt cầu tâm I, bán kính IM là:
Đáp án D.
Gọi A, B, C lần lượt là hình chiếu của M trên các trục Ox, Oy, Oz.
Suy ra A(1;0;0), B(0;2;0), C(0;0;3)
Phương trình:
Đáp án D
Với điểm M(1;-2;3). Gọi M 1 , M 2 , M 3 lần lượt là hình chiếu vuông góc của điểm M trên các trục Ox, Oy, Oz thì tọa độ M 1 (1; 0; 0); M 2 (0 ;-2; 0) và M 3 ( 0; 0; 3).
Phương trình mặt phẳng M1M2M3 là:
x 1 + y - 2 + z 3 = 1
Đáp án A
Ta có:
Do đó PT đoạn chắn của mặt phẳng (ABC) là:
Suy ra (ABC): 6x - 4y + 3z - 12 =0
Đáp án C
Hình chiếu vuông góc của M(2;-1;4) lên mặt phẳng (Oxy) là điểm H(2;-1;0).
Đáp án B
vtpt của 0x n ⇀ (1;0;0) vtcp của 0y m ⇀ (0;1;0)
M 1 là hình chiếu của m lên 0x khi
M M 1 ⇀ . n ⇀ = 0 ⇔ m = 1 suy ra M 1 (1;0;0)
M 2 là hình chiếu của m lên0y khi M M 2 ⇀ . m ⇀ = 0 ⇔ n = 2 suy ra M 2 (0;2;0)
M 1 M 2 ⇀ (-1;2;0) là vtcp của đt M 1 M 2