Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Sử dụng phương trình đoạn chắn, ta có phương trình mặt phẳng (ABC) là
Đáp án C
Ta có M,N,P lần lượt là giao điểm của (MNP) với 3 trục tọa độ
Chọn B
Mặt cầu có tâm I (1; 2; 3) bán kính là R = 4. Ta có A, B nằm trong mặt cầu.
Gọi K là hình chiếu của I trên AB và H là hình chiếu của I lên thiết diện.
Ta có diện tích thiết diện bằng
Do đó diện tích thiết diện nhỏ nhất khi IH lớn nhất. Mà suy ra (P) qua A, B và vuông góc với IK. Ta có IA = IB = √5 suy ra K là trung điểm của AB
Vậy K (0; 1; 2) và
Vậy (P): (x - 1) + y + (z- 2) = 0 => - x - y - z + 3 = 0. Vậy T = -3
Đáp án B
Xét ( S ) : x 1 2 + y - 2 2 + z - 3 2 = 16 có tâm I(1;2;3), bán kính R = 4
Gọi O là hình chiếu của I trên (P).
Khi và chỉ khi IO ≡ IHvới H là hình chiếu của I trên AB.
I H → là véc tơ pháp tuyến của mp (P) mà IA = IB => H là trung điểm của AB
\(\overrightarrow{AB}=\left(1;2;3\right)\) ; \(\overrightarrow{CD}=\left(1;1;1\right)\)
\(\left[\overrightarrow{AB};\overrightarrow{CD}\right]=\left(-1;2;-1\right)=-\left(1;-2;1\right)\)
Phương trình (P):
\(1\left(x-1\right)-2y+1\left(z-1\right)=0\Leftrightarrow x-2y+z-2=0\)
Để tìm phương trình mặt phẳng (P) ta cần tìm được vector pháp tuyến của mặt phẳng. Vì mặt phẳng (P) song song với đường thẳng AB nên vector pháp tuyến của (P) cũng vuông góc với vector chỉ phương của AB, tức là AB(1-0;2-0;4-1)=(1;2;3).
Vì (P) đi qua C(1;0;1) nên ta dễ dàng tìm được phương trình của (P) bằng cách sử dụng công thức phương trình mặt phẳng:
3x - 2y - z + d = 0, trong đó d là vế tự do.
Để tìm d, ta chỉ cần thay vào phương trình trên cặp tọa độ (x;y;z) của điểm C(1;0;1):
3(1) -2(0) - (1) + d = 0
⇒ d = -2
Vậy phương trình của mặt phẳng (P) là:
3x - 2y - z - 2 = 0,
và đáp án là B.
Đáp án C
Phương trình mặt phẳng (ABC) là 2x+3y-6z+6=0