K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2019

Đáp án D

Phương pháp:  d 2 + r 2 = R 2

Trong đó,

d: khoảng cách từ tâm O đến mặt phẳng (P),

r: bán kính đường tròn là giao tuyến của mặt cầu (S)

và mặt phẳng (P),

R: bán kính hình cầu.

Cách giải:

(S): x 2 + y 2 + z 2 - 6 x + 4 y - 2 z + 5 = 0 <=> x - 3 2 + y + 2 2 + z - 1 2 = 9

=> (S) có tâm I(3; –2;1) bán kính R = 3

(Q) cắt (S) theo giao tuyến là một đường tròn bán kính r = 2

Ta có:  d 2 + r 2 = R 2  

Gọi  n → a ; b ; c , n → ≠ 0  là một VTPT của (Q). Khi đó  n →  vuông góc với  VTCP  n → 1 ; 0 ; 0 của Ox

=>1.a + 0.b +).c = 0 ó a = 0

Phương trình mặt phẳng (Q) đi qua O(0;0;0) và có VTPT  n → 0 ; b ; c , n → ≠ 0  là:

0.(x – 0) + b(y – 0) + c(z – 0) ó by + cz = 0

Khoảng cách từ tâm I đến (Q):

Cho c = –1 => b = 2 =>  n → 0 ; 2 ; - 1

Phương trình mặt phẳng (Q): 2y  - z = 0

28 tháng 4 2018

Chọn đáp án D.

11 tháng 3 2019

Đáp án A.

Giả sử mặt cầu (S) có tâm  I a ; 0 ; 0 ∈ O x , bán kính  R > 0 . Khi đó phương trình mặt cầu (S) là x − a 2 + y 2 + z 2 = R 2 .  

Gọi H,K lần lượt là hình chiếu của I trên (P) và (Q) , khi đó:

I H = d I ; P = a + 1 6  và  I K = d I ; Q = 2 a − 1 6

Do I H 2 + 4 = R 2  và I K 2 + r 2 = R 2  nên a + 1 2 6 + 4 = R 2 2 a − 1 2 6 + r 2 = R 2  

  ⇒ a + 1 2 6 + 4 = 2 a − 1 2 6 + r 2 ⇔ a + 1 2 + 24 = 2 a − 1 2 + 6 r 2

  ⇔ a 2 − 2 a + 2 r 2 − 8 = 0 *

Để có duy nhất một mặt cầu (S) thì phương trình (*) phải có một nghiệm

⇔ Δ ' = 1 − 2 r 2 − 8 = 0 ⇔ r 2 = 9 2  . Do  r > 0  nên r = 3 2  .

11 tháng 2 2019

Chọn đáp án D

Giả sử mặt cầu (S) có tâm I m ; 0 ; 0  và bán kính là R (do I ∈ O x ).

Ta có

 

 

Từ đó suy ra

Để có đúng một mặt cầu (S) thỏa mãn yêu cầu khi và chỉ khi phương trình (*) có đúng một nghiệm m, tức là

1 tháng 6 2017

Đáp án D.

Gọi I a ; 0 ; 0  là tâm của mặt cầu (S) có bán kính R.

Khoảng cách từ tâm I đến hai mặt phẳng (P) và (Q) lần lượt là  d 1 = a + 1 6 , d 2 = 2 a + 1 6

Theo giả thiết, ta có:

R 2 = d 1 2 + 2 2 = d 2 2 + r 2 ⇔ a + 1 2 6 + 4 = 2 a − 1 2 6 + r 2 ⇔ a 2 + 2 a + 25 = 4 a 2 − 4 a + 1 + 6 r 2 ⇔ 3 a 2 − 6 a + 6 r 2 − 24 = 0   *

Yêu cầu bài toán (*) có nghiệm duy nhất

⇔ Δ ' = − 3 2 − 3 6 r 2 − 24 = 0 ⇔ r = 3 2 2 .

28 tháng 9 2019

13 tháng 1 2017

5 tháng 3 2018

Đáp án B

Mặt cầu (S) có tâm I(1;-1;2) và bán kính 

Ta có (Q) // (P) nên (Q) có dạng: 

Mặt phẳng (Q) cắt (S) theo 1 đường tròn có bán kính

18 tháng 12 2018

Gọi H,I lần lượt là hình chiếu vuông góc của O lên (P) và .

Ta có d ( O; ∆ ) =  OI ≥ OH. Dấu “=” xảy ra khi I = H.

Đường thẳng OH qua O ( 0;0;0 ) nhận n → = ( 1;2;1 ) làm vectơ chỉ phương nên có phương trình là  x = t y = 2 t z = t

Mặt phẳng (P) có phương trình: x + 2y + z - 6 = 0.

Từ hai phương trình trên suy ra t = 1 nên H ( 1;2;1 ).

Khi đó (Q) là mặt phẳng chứa d và đi qua H.

Ta có M ( 1;1;2 ) ∈ d , vectơ chỉ phương của d là u → = ( 1;1;-2 ); H M → = ( 0;-1;1 ).

Suy ra vectơ pháp tuyến của (Q) là n → = n → ; H M → = ( -1;-1;-1 ) . Hơn nữa (Q) qua điểm M ( 1;1;2 ) nên (Q) có phương trình là:x + y + z - 4 = 0

Đáp án C

31 tháng 3 2019

Chọn C.

Phương pháp: Lần lượt tìm các yếu tố tâm và bán kính của mặt cầu.

Cách giải: Tọa độ tâm mặt cầu thỏa mãn hệ