K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2020

a) Trục Ox là đường thẳng đi qua O(0, 0, 0) và nhận i→=(1,0,0) làm vectơ chỉ phương nên có phương trình tham số là:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

* Tương tự, trục Oy có phương trình

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Trục Oz có phương trình

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

b) Đường thẳng đi qua M0 (x0,y0,z0) song song với trục Ox sẽ có vectơ chỉ phương là i→(1,0,0) nên có phương trình tham số là:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

tương tự ta có Phương trình của đường thẳng đi qua M0 (x0,y0,z0) và song song với Oy là:

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

phương trình đường thẳng đi qua M0 (x0,y0,z0) và song song với Oz là

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

c) Đường thẳng đi qua M(2, 0, -1) và có vectơ chỉ phương u→(-1,3,5) có phương trình tham số là

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

có phương trình chính tắc là

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

d) Đường thẳng đi qua N(-2, 1, 2) và có vectơ chỉ phương u→(0,0,-3) có phương trình tham số là

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Đường thẳng này không có Phương trình chính tắc.

e) Đường thẳng đi qua N(3, 2, 1) và vuông góc với mặt phẳng: 2x- 5y + 4= 0 nên nó nhận vectơ pháp tuyến của mặt phẳng này làn→(2,-5,0) là vectơ chỉ phương, nên ta có phương trình tham số là

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

Đường thẳng này không có Phương trình chính tắc.

f) Đường thẳng đi qau P(2, 3, -1) và Q(1, 2, 4) sẽ nhận PQ→(-1,-1,5) là vectơ chỉ phương, nên có phương trình tham số là

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

và có phương tình chính tắc là

Giải Toán 12 nâng cao | Giải bài tập Toán lớp 12 nâng cao

9 tháng 2 2020

ÔI THÔI CHẾT LM SAI

22 tháng 9 2019

Xem hình cho dễ trả lời nè https://kenh14cdn.com/thumb_w/620/2018/8/31/photo-1-15356853370631011068279.jpg

17 tháng 2 2020

bài khó quá bạn ạ

17 tháng 2 2020

1+1=2

2+2=4

3+3=6

Câu 1: Bỏ ngoài nướng trong, ăn ngoài bỏ trong là gì?Câu 2: Bà đó bả chết bả bay lên trời. Hỏi bà ấy chết năm bao nhiêu tuổi và tại sao bà ấy chết?Câu 3:  Lịch nào dài nhất?Câu 4: Con gì ăn lửa với nước than?Câu 5 Con đường dài nhất là đường nào?Câu 6: Con kiến bò lên tai con voi, nói gì với con voi mà ngay tức khắc con voi nằm lăn ra chết?Câu 7: Cái gì đen khi bạn mua nó, đỏ khi...
Đọc tiếp

Câu 1: Bỏ ngoài nướng trong, ăn ngoài bỏ trong là gì?

Câu 2: Bà đó bả chết bả bay lên trời. Hỏi bà ấy chết năm bao nhiêu tuổi và tại sao bà ấy chết?

Câu 3:  Lịch nào dài nhất?

Câu 4: Con gì ăn lửa với nước than?

Câu 5 Con đường dài nhất là đường nào?

Câu 6: Con kiến bò lên tai con voi, nói gì với con voi mà ngay tức khắc con voi nằm lăn ra chết?

Câu 7: Cái gì đen khi bạn mua nó, đỏ khi dùng nó và xám xịt khi vứt nó đi?

Câu 8: Có 1 chiếc thuyền tối đa là chỉ chở được hai người, nếu thêm người thứ 3 sẽ bị chìm ngay lập tức. Hỏi tại sao người ta trông thấy trên chiếc thuyền đó có ba thằng Mỹ đen và ba thằng Mỹ trắng ngồi trên chiếc thuyền đó mà ko bị chìm?

Câu 9: Con gì đập thì sống, không đập thì chết?

Câu 10: Nắng ba năm tôi không bỏ bạn, mưa 1 ngày sao bạn lại bỏ tôi là cái gì?

 

3
3 tháng 9 2021

Câu1 bắp ngô

câu 3 lịch sử 

câu 7 cục than 

3 tháng 9 2021

Câu 2 bà chết năm 73 tuổi vì bị bò đá 

30 tháng 4 2019

Milk lộn toán hình nhé!

30 tháng 4 2019

Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).

Khi đó :

         A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)  A=(0;0;a)B=(a;0;a)D=(0;a;a)C=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)

          P=(a;a2;a)P=(a;a2;a)

a) Ta có AP=(a;a2;a)AP→=(a;a2;a)

                       BC=(0;a;a).BC′→=(0;a;a).

Gọi αα là góc giữa hai đường thẳng APAP và BCBC′ ta có :

         cosα=0+a22+a2a2+a22+a2.a2+a2=12α=45ocos⁡α=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o

b) Ta có : AP=(a;a2;a)AP→=(a;a2;a)AB=(a;0;0),AC=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)

[AP,AB]=(a2a00;aa0a;aa2a0)=(0;a2;a22)[AP,AB].AC=0+a3a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.

Vậy VAPBC=16[AP,AB].AC=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312. 

QUẢNG CÁO

c) Mặt phẳng (ADCB)(A′D′CB) song song với trục Oy nên có phương trình :

       px+qz+n=0px+qz+n=0 (n0,p2+q2>0).(n≠0,p2+q2>0).

Vì mặt phẳng này đi qua A,B,CA′,B,C nên ta xác định được p = q và n = -pa.

Cho p = 1, ta được phương trình mp(ADCB)(A′D′CB) là x+za=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là n=(1;0;1).n→=(1;0;1).

Từ giả thiết MAD,NDB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :

                      M=(0;k2;k2),N=(k2;a2k2;0).M=(0;k2;k2),N=(k2;a2−k2;0).

Suy ra −−MN=(k2;a22k2;k2).MN→=(k2;a2−2k2;–k2).

Ta có −−MN.n=1.k2+0(a22k2)+1.(k2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0

−−MNn.⇒MN→⊥n→.

Rõ ràng Nmp(ADCB).N∉mp(A′D′CB). Suy ra MN song song với mp(ADCB).(A′D′CB).

d) Ta có MN2=(k2)2+(a22k2)2+(k2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.

=3k22a2k+a2=3(ka23)2+a293a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.

MN2MN2 nhỏ nhất bằng a23a23 khi k=a23k=a23 (thoả mãn điều kiện 0<k<a20<k<a2 ).

Vậy MN ngắn nhất bằng a33a33 khi k=a23k=a23.

e) Khi MN ngắn nhất thì k=a23k=a23 Khi đó −−MN=(a3;a3;a3).MN→=(a3;a3;–a3).

Ta lại có AD=(0;a;a),DB=(a;a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−MN.AD=0,−−MN.DB=0.MN→.AD′→=0,MN→.DB→=0.

Vậy MN là đường vuông góc chung của AD’ và DB.

Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).

Khi đó :

         A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)  A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)

          P=(a;a2;a)P=(a;a2;a)

a) Ta có −−→AP=(a;a2;a)AP→=(a;a2;a)

                       −−→BC′=(0;a;a).BC′→=(0;a;a).

Gọi αα là góc giữa hai đường thẳng APAP và BC′BC′ ta có :

         cosα=∣∣0+a22+a2∣∣√a2+a22+a2.√a2+a2=1√2⇒α=45ocos⁡α=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o

b) Ta có : −−→AP=(a;a2;a)AP→=(a;a2;a), −−→AB=(a;0;0),−−→AC′=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)

⇒[−−→AP,−−→AB]=(∣∣∣a2a00∣∣∣;∣∣∣aa0a∣∣∣;∣∣∣aa2a0∣∣∣)=(0;a2;–a22)⇒[−−→AP,−−→AB].−−→AC′=0+a3–a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.

Vậy VAPBC′=16∣∣∣[−−→AP,−−→AB].−−→AC′∣∣∣=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312. 

QUẢNG CÁO

c) Mặt phẳng (A′D′CB)(A′D′CB) song song với trục Oy nên có phương trình :

       px+qz+n=0px+qz+n=0 (n≠0,p2+q2>0).(n≠0,p2+q2>0).

Vì mặt phẳng này đi qua A′,B,CA′,B,C nên ta xác định được p = q và n = -pa.

Cho p = 1, ta được phương trình mp(A′D′CB)(A′D′CB) là x+z–a=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là →n=(1;0;1).n→=(1;0;1).

Từ giả thiết M∈AD′,N∈DB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :

                      M=(0;k√2;k√2),N=(k√2;a√2−k√2;0).M=(0;k2;k2),N=(k2;a2−k2;0).

Suy ra −−−→MN=(k√2;a√2−2k√2;–k√2).MN→=(k2;a2−2k2;–k2).

Ta có −−−→MN.→n=1.k√2+0(a√2−2k√2)+1.(–k√2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0

⇒−−−→MN⊥→n.⇒MN→⊥n→.

Rõ ràng N∉mp(A′D′CB).N∉mp(A′D′CB). Suy ra MN song song với mp(A′D′CB).(A′D′CB).

d) Ta có MN2=(k√2)2+(a√2−2k√2)2+(–k√2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.

=3k2–2a√2k+a2=3⎡⎣(k–a√23)2+a29⎤⎦≥3a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.

MN2MN2 nhỏ nhất bằng a23a23 khi k=a√23k=a23 (thoả mãn điều kiện 0<k<a√20<k<a2 ).

Vậy MN ngắn nhất bằng a√33a33 khi k=a√23k=a23.

e) Khi MN ngắn nhất thì k=a√23k=a23 Khi đó −−−→MN=(a3;a3;–a3).MN→=(a3;a3;–a3).

Ta lại có −−→AD′=(0;a;a),−−→DB=(a;–a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−−→MN.−−→AD′=0,−−−→MN.−−→DB=0.MN→.AD′→=0,MN→.DB→=0.

Vậy MN là đường vuông góc chung của AD’ và DB.

Mặt khác −−→A′C=(a;a;–a)=3−−−→MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−−→MNMN→, −−→A′CA′C→ cùng phương. Do N∉A′CN∉A′C  nên MN//A′C.Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).

Khi đó :

         A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)  A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)

          P=(a;a2;a)P=(a;a2;a)

a) Ta có −−→AP=(a;a2;a)AP→=(a;a2;a)

                       −−→BC′=(0;a;a).BC′→=(0;a;a).

Gọi αα là góc giữa hai đường thẳng APAP và BC′BC′ ta có :

         cosα=∣∣0+a22+a2∣∣√a2+a22+a2.√a2+a2=1√2⇒α=45ocos⁡α=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o

b) Ta có : −−→AP=(a;a2;a)AP→=(a;a2;a), −−→AB=(a;0;0),−−→AC′=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)

⇒[−−→AP,−−→AB]=(∣∣∣a2a00∣∣∣;∣∣∣aa0a∣∣∣;∣∣∣aa2a0∣∣∣)=(0;a2;–a22)⇒[−−→AP,−−→AB].−−→AC′=0+a3–a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.

Vậy VAPBC′=16∣∣∣[−−→AP,−−→AB].−−→AC′∣∣∣=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312. 

QUẢNG CÁO

c) Mặt phẳng (A′D′CB)(A′D′CB) song song với trục Oy nên có phương trình :

       px+qz+n=0px+qz+n=0 (n≠0,p2+q2>0).(n≠0,p2+q2>0).

Vì mặt phẳng này đi qua A′,B,CA′,B,C nên ta xác định được p = q và n = -pa.

Cho p = 1, ta được phương trình mp(A′D′CB)(A′D′CB) là x+z–a=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là →n=(1;0;1).n→=(1;0;1).

Từ giả thiết M∈AD′,N∈DB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :

                      M=(0;k√2;k√2),N=(k√2;a√2−k√2;0).M=(0;k2;k2),N=(k2;a2−k2;0).

Suy ra −−−→MN=(k√2;a√2−2k√2;–k√2).MN→=(k2;a2−2k2;–k2).

Ta có −−−→MN.→n=1.k√2+0(a√2−2k√2)+1.(–k√2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0

⇒−−−→MN⊥→n.⇒MN→⊥n→.

Rõ ràng N∉mp(A′D′CB).N∉mp(A′D′CB). Suy ra MN song song với mp(A′D′CB).(A′D′CB).

d) Ta có MN2=(k√2)2+(a√2−2k√2)2+(–k√2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.

=3k2–2a√2k+a2=3⎡⎣(k–a√23)2+a29⎤⎦≥3a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.

MN2MN2 nhỏ nhất bằng a23a23 khi k=a√23k=a23 (thoả mãn điều kiện 0<k<a√20<k<a2 ).

Vậy MN ngắn nhất bằng a√33a33 khi k=a√23k=a23.

e) Khi MN ngắn nhất thì k=a√23k=a23 Khi đó −−−→MN=(a3;a3;–a3).MN→=(a3;a3;–a3).

Ta lại có −−→AD′=(0;a;a),−−→DB=(a;–a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−−→MN.−−→AD′=0,−−−→MN.−−→DB=0.MN→.AD′→=0,MN→.DB→=0.

Vậy MN là đường vuông góc chung của AD’ và DB.

Mặt khác −−→A′C=(a;a;–a)=3−−−→MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−−→MNMN→, −−→A′CA′C→ cùng phương. Do N∉A′CN∉A′C  nên MN//A′C.

Mặt khác AC=(a;a;a)=3−−MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−MNMN→ACA′C→ cùng phương. Do NACN∉A′C  nên MN//AC.Ta chọn hệ toạ độ Oxyz có gốc là đỉnh A, tia Ox chứa AB, tia Oy chứa AD và tia Oz chứa AA’ (h.105).

Khi đó :

         A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)A=(0;0;0)B=(a;0;0)D=(0;a;0)C=(a;a;0)  A=(0;0;a)B=(a;0;a)D=(0;a;a)C=(a;a;a)A′=(0;0;a)B′=(a;0;a)D′=(0;a;a)C′=(a;a;a)

          P=(a;a2;a)P=(a;a2;a)

a) Ta có AP=(a;a2;a)AP→=(a;a2;a)

                       BC=(0;a;a).BC′→=(0;a;a).

Gọi αα là góc giữa hai đường thẳng APAP và BCBC′ ta có :

         cosα=0+a22+a2a2+a22+a2.a2+a2=12α=45ocos⁡α=|0+a22+a2|a2+a22+a2.a2+a2=12⇒α=45o

b) Ta có : AP=(a;a2;a)AP→=(a;a2;a)AB=(a;0;0),AC=(a;a;a)AB→=(a;0;0),AC′→=(a;a;a)

[AP,AB]=(a2a00;aa0a;aa2a0)=(0;a2;a22)[AP,AB].AC=0+a3a32=a32.⇒[AP→,AB→]=(|a2a00|;|aa0a|;|aa2a0|)=(0;a2;–a22)⇒[AP→,AB→].AC′→=0+a3–a32=a32.

Vậy VAPBC=16[AP,AB].AC=16.a32=a312.VAPBC′=16|[AP→,AB→].AC′→|=16.a32=a312. 

QUẢNG CÁO

c) Mặt phẳng (ADCB)(A′D′CB) song song với trục Oy nên có phương trình :

       px+qz+n=0px+qz+n=0 (n0,p2+q2>0).(n≠0,p2+q2>0).

Vì mặt phẳng này đi qua A,B,CA′,B,C nên ta xác định được p = q và n = -pa.

Cho p = 1, ta được phương trình mp(ADCB)(A′D′CB) là x+za=0x+z–a=0. Vectơ pháp tuyến của mặt phẳng này là n=(1;0;1).n→=(1;0;1).

Từ giả thiết MAD,NDB;AM=DN=kM∈AD′,N∈DB;AM=DN=k, ta tính được :

                      M=(0;k2;k2),N=(k2;a2k2;0).M=(0;k2;k2),N=(k2;a2−k2;0).

Suy ra −−MN=(k2;a22k2;k2).MN→=(k2;a2−2k2;–k2).

Ta có −−MN.n=1.k2+0(a22k2)+1.(k2)=0MN→.n→=1.k2+0(a2−2k2)+1.(–k2)=0

−−MNn.⇒MN→⊥n→.

Rõ ràng Nmp(ADCB).N∉mp(A′D′CB). Suy ra MN song song với mp(ADCB).(A′D′CB).

d) Ta có MN2=(k2)2+(a22k2)2+(k2)2.MN2=(k2)2+(a2−2k2)2+(–k2)2.

=3k22a2k+a2=3(ka23)2+a293a29=a23.=3k2–2a2k+a2=3[(k–a23)2+a29]≥3a29=a23.

MN2MN2 nhỏ nhất bằng a23a23 khi k=a23k=a23 (thoả mãn điều kiện 0<k<a20<k<a2 ).

Vậy MN ngắn nhất bằng a33a33 khi k=a23k=a23.

e) Khi MN ngắn nhất thì k=a23k=a23 Khi đó −−MN=(a3;a3;a3).MN→=(a3;a3;–a3).

Ta lại có AD=(0;a;a),DB=(a;a;0)AD′→=(0;a;a),DB→=(a;–a;0) nên −−MN.AD=0,−−MN.DB=0.MN→.AD′→=0,MN→.DB→=0.

Vậy MN là đường vuông góc chung của AD’ và DB.

Mặt khác AC=(a;a;a)=3−−MNA′C→=(a;a;–a)=3MN→, chứng tỏ −−MNMN→ACA′C→ cùng phương. Do NACN∉A′C  nên MN//AC.

14 tháng 8 2019

Vì \(n\inℤ\Rightarrow\hept{\begin{cases}6n+42\inℤ\\6n\inℤ\end{cases};\left(6n\ne0\right)}\)

mà \(A\inℤ\Leftrightarrow6n+42⋮6n\)

Vì \(6n⋮6n\)

\(\Rightarrow42⋮6n\)

\(\Rightarrow7⋮n\)

\(\Rightarrow n\inƯ\left(7\right)\)

\(\Rightarrow n\in\left\{1;-1;7;-7\right\}\text{thì }A\inℤ\)

14 tháng 8 2019

Để A là số nguyên thì 42 phải chia hết cho 6n và n thuộc Z

suy ra : 6n thuộc Ư (42) = { 1,2,3,6,7,14,21,42,-1,-2,-3,-6,-7,-14,-21,-42}

suy ra : n thuộc { 1,-1,7,-7 }

Vậy n thuộc 1,-1,7,-7