K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 3 2019

Chọn C

Phương trình tham số của đường thẳng 

I d => I (1+t;2+2t;3+t)

I (α) => 1 + t + 2 + 2t – (3 + t) -2 = 0 ó t = 1 =>  I (2;4;4).

Đường thẳng cần tìm qua điểm I (2;4;4), nhận một VTCP là  nên có PTTS 

Kiểm tra , thấy A (5;2;5) thỏa mãn phương trình (*). Vậy chọn C.

26 tháng 11 2018

Chọn C

Phương trình tham số của đường thẳng

I d => I (1 + t; 2 + 2t; 3+ t), I (α) => 1 + t + 2 + 2t – (3 + t) - 2 = 0 ó t = 1 => I (2; 4; 4)

Vectơ chỉ phương của d

Vectơ chỉ pháp tuyến của (α) 

Ta có

Đường thẳng cần tìm qua điểm I (2; 4; 4), nhận một VTCP là  nên có

Kiểm tra A (5; 2; 5) Δ3  (với t = -1) , thấy A (5; 2; 5) thỏa mãn phương trình (*)

6 tháng 4 2019

Đáp án B.

14 tháng 9 2019

Đáp án A

Phương pháp:

Gọi đường thẳng cần tìm là d’

 Tìm tọa độ điểm A.

n d ' → = u d → ; n ( α ) →  là 1 VTCP của đường phẳng d’

Cách giải:

Gọi d’ là đường thẳng cần tìm, 

Ta có

=> A (2;4;4)

là một VTCP của d'

Kết hợp với d’ qua A(2;4;4) 

12 tháng 12 2017

Đáp án B

Phương pháp:

thay tọa độ điểm B vào phương trình  ( α ) => 1 phương trình 2 ẩn a, b.

 Sử dụng công thức tính khoảng cách

 lập được 1 phương trình 2 ẩn chứa a, b.

+) Giải hệ phương trình tìm a,b => Toạ độ điểm B => Độ dài AB.

Dế thấy 

Ta có 

Lại có

Đường thẳng d đi qua M(0;0;-1), có  u → = ( 1 ; 2 ; 2 )

 

Do đó

 

 

Vậy AB =  7 2

NV
14 tháng 4 2022

Phương trình \(d_1\) : \(\dfrac{x-1}{1}=\dfrac{y-2}{-1}=\dfrac{z-3}{-1}\) dạng tham số: \(\left\{{}\begin{matrix}x=1+t\\t=2-t\\z=3-t\end{matrix}\right.\)

Gọi A là giao điểm d1 và (P), tọa độ A thỏa mãn:

\(3-t-1=0\Rightarrow t=2\Rightarrow A\left(3;0;1\right)\)

\(\overrightarrow{n_P}=\left(0;0;1\right)\) ; \(\overrightarrow{n_Q}=\left(1;1;1\right)\)

\(\overrightarrow{u_{\Delta}}=\left[\overrightarrow{n_P};\overrightarrow{n_Q}\right]=\left(-1;1;0\right)\)

\(\left[\overrightarrow{u_{\Delta}};\overrightarrow{n_P}\right]=\left(1;1;0\right)\)

Phương trình d: \(\left\{{}\begin{matrix}x=3+t\\y=t\\z=1\end{matrix}\right.\)

16 tháng 7 2017

Đáp án B

Phương pháp giải:

Ứng dụng của tích có hướng để tìm vectơ pháp tuyến của mặt phẳng. Phương trình mặt phẳng đi qua  M ( x 0 ; y 0 ; z 0 )  và có VTPT  

Lời giải:

Vậy phương trình mặt phẳng (P): 2x-3y-z+7=0

25 tháng 8 2019

Chọn C.

1 tháng 6 2019