K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2019

Chọn B

Ta có d₁ đi qua điểm M (1;2;-3) và có vtcp 

Đường thẳng d₂ đi qua điểm N (4;3;1) và có vtcp 

nên hai đường thẳng đã cho luôn chéo nhau và

CH 1.Trong không gian Oxyz ; Cho 3 điểm: A(-1; 1; 4) , B(1;- 1; 5) và C(1; 0; 3), toạ độ điểm D để ABCD là một hình bình hành là: A. D(-1; 2; 2) C. D(-1;-2 ; 2) D. D(1; -2; -2)CH 2.Trong không gian Oxyz cho 2 điểm A (1;–2;2) và B (– 2:0;1). Toạ độ điềm C nằm trên trục Oz để A ABC cân tại C là : A. C(0;0;2) C. C(0;–1;0) B. D(1; 2; -2) В. С(0,:0,-2) D. C( ;0;0)CH 3. Trong không gian Oxyz cho 2 vectơ a =(1; 2; 2) và (1; 2; -2); khi đó : ¿(i+6) có giá trị...
Đọc tiếp

CH 1.Trong không gian Oxyz ; Cho 3 điểm: A(-1; 1; 4) , B(1;- 1; 5) và C(1; 0; 3), toạ độ điểm D để ABCD là một hình bình hành là: A. D(-1; 2; 2) C. D(-1;-2 ; 2) D. D(1; -2; -2)

CH 2.Trong không gian Oxyz cho 2 điểm A (1;–2;2) và B (– 2:0;1). Toạ độ điềm C nằm trên trục Oz để A ABC cân tại C là : A. C(0;0;2) C. C(0;–1;0) B. D(1; 2; -2) В. С(0,:0,-2) D. C( ;0;0)

CH 3. Trong không gian Oxyz cho 2 vectơ a =(1; 2; 2) và (1; 2; -2); khi đó : ¿(i+6) có giá trị bằng : С. 4 A. 10 В. 18 D. 8

CH 4.Trong không gian Oxyz cho 2 vecto a= (3; 1; 2) và b= (2; 0; -1); khi đó vectơ 2a-b có độ dài bằng : А. 3/5 В. 29 С. M D. S/5

CH 5. Cho hình bình hành ABCD với A (-1;0;2), B(3;4;0) D (5;2;6). Tìm khẳng định sai. A. Tâm của hình bình hành có tọa độ là (4;3;3) B. Vecto AB có tọa độ là (4;-4;-2) C. Tọa độ của điểm C là (9;6;4) D. Trọng tâm tam giác ABD có tọa độ là (3;2;2)

0
9 tháng 9 2019

Chọn B

Mặt phẳng (ABC) đi qua B (1; 0; -1) và có một véctơ pháp tuyến là:

Phương trình mặt phẳng (ABC): 5x + 2y - z - 6 = 0

Độ dài đường cao xuất phát từ đỉnh D (0; 0; d) của tứ diện ABCD bằng d(D, (ABC))

Theo bài ra ta có:

Do D thuộc tia Oz nên D (0; 0; 3).

NV
23 tháng 11 2021

\(\left\{{}\begin{matrix}a+8-c+d=0\\\dfrac{\left|a-8+2c+d\right|}{\sqrt{a^2+16+c^2}}=5\end{matrix}\right.\)

\(\Rightarrow\left(3c-16\right)^2=25\left(a^2+c^2+16\right)\)

\(\Rightarrow25a^2+16c^2+96c+144=0\)

\(\Rightarrow25a^2+16\left(c+3\right)^2=0\Rightarrow\left\{{}\begin{matrix}a=0\\c=-3\end{matrix}\right.\)

\(\Rightarrow d=c-a-8=-11\)

\(\Rightarrow a+c+d=-14\)

5 tháng 2 2019

Chọn D

Trên cạnh AB, AC , AD của tứ diện ABCD lần lượt có các điểm B', C', D'. Áp dụng công thức tỷ số thể tích ta có

Từ giả thiết 

áp dụng bất đẳng thức AM- GM ta có

Do thể tích ABCD cố định nên thể tích AB'C'D' nhỏ nhất 

=> (B'C'D') song song với (BCD) và đi qua điểm  B'

suy ra vectơ pháp tuyến của mặt phẳng (B'C'D')  là:

Vậy phương trình (B'C'D') là:

13 tháng 8 2017

Chọn A

14 tháng 5 2019

14 tháng 7 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12Giải sách bài tập Toán 12 | Giải sbt Toán 12

5 tháng 1 2018

Chọn C

Suy ra ABCD là hình bình hành.

 

=>E.ABCD là hình chóp đáy là hình bình hành nên các mặt phẳng cách đều 5 điểm là

+ Mặt phẳng qua 4 trung điểm của 4 cạnh bên.

+ Mặt phẳng qua 4 trung điểm lần lượt của ED, EC, AD, BC

+ Mặt phẳng qua 4 trung điểm lần lượt của EC, EB, DC, AB

+ Mặt phẳng qua 4 trung điểm lần lượt của EA, EB, AD, BC.

+ Mặt phẳng qua 4 trung điểm lần lượt của EA, ED, AB, DC.

NV
6 tháng 3 2023

\(\overrightarrow{AB}=\left(1;2;3\right)\) ; \(\overrightarrow{AC}=\left(-3;3;3\right)\) ; \(\overrightarrow{AD}=\left(-1;3;1\right)\)

\(V_{ABCD}=\dfrac{1}{6}\left|\left[\overrightarrow{AB};\overrightarrow{AC}\right].\overrightarrow{AD}\right|=4\)