Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Do (P) ⊥ AB nên mp(P) có một vectơ pháp tuyến là n P → = AB → = (-2; 1; 3). Mặt khác (P) đi qua điểm A nên phương trình của mặt phẳng (P) là:
-2(x - 1) + (y - 0) + 3(z + 2) = 0 ⇔ -2x + y + 3z + 8 = 0 ⇔ 2x - y - 3z - 8 = 0.
Vậy đáp án đúng là A.
Lưu ý. Khi ta viết phương trình mặt phẳng (P) bị nhầm ở cột z:
-2(x - 1) + (y - 0) + 3(z + 2) = 0 <> 2x - y - 3z - 4 = 0
thì ta được đáp án B.
Khi ta viết phương trình mặt phẳng bị nhầm giữa tọa độ của điểm A với tọa độ của vectơ pháp tuyến 1(x - (-2)) + 0(y - 1) -2(z - 3) = 0 <=> x - 2x + 8 = 0 thì ta được đáp án C.
Khi ta viết phương trình mặt phẳng đi qua B thì ta thu được đáp án D.
Đáp án B.
Phương pháp giải: Gọi tọa độ điểm, tính khoảng cách và tìm tọa độ tâm thông qua bán kính
Lời giải: Ta có
Phương trình mặt phẳng (Oxy): z=0
Khoảng cách từ tâm I đến mp(Oxy) là
Theo bài ra, ta có
Chọn D
Trên cạnh AB, AC , AD của tứ diện ABCD lần lượt có các điểm B', C', D'. Áp dụng công thức tỷ số thể tích ta có
Từ giả thiết
áp dụng bất đẳng thức AM- GM ta có
Do thể tích ABCD cố định nên thể tích AB'C'D' nhỏ nhất
=> (B'C'D') song song với (BCD) và đi qua điểm B'
suy ra vectơ pháp tuyến của mặt phẳng (B'C'D') là:
Vậy phương trình (B'C'D') là:
Chọn B
Gọi là vectơ pháp tuyến của (P) thỏa yêu cầu bài toán.
(P) qua N (-1; 0; -1) nên phương trình mặt phẳng có dạng:
A(x+1) + By + C(z+1) = 0 <=> Ax + By + Cz + A + C = 0
• (P) qua M (1;2;1) suy ra
A + 2B + C + A + C = 0 <=> A + B + C = 0 => A + C = - B (1)
• (P) cắt trục Ox tại A(a; 0; 0) suy ra A.a + A + C = 0 => A.a - B = 0 => a = B/A
(Do nếu A = 0 => B = 0 => C = 0 nên A ≠ 0). Suy ra A(B/A; 0; 0)
• (P) cắt trục Oy tại B (0; b; 0) suy ra B.b + A + C = 0 => B.b - B = 0 => B = 0 hoặc b = 1
TH1: B = 0 => A + C = 0. Chọn C = 1 => A = -1
Phương trình mặt phẳng (P) có dạng: x - z = 0 => A ≡ B ≡ O (0;0;0) => không thỏa yêu cầu.
TH2: b = 1 => B (0;1;0),
· B/A = -1 => B = -A => C = 0. Chọn A = 1 => B = -1
Phương trình mp (P): x - y + 1 = 0
· B/A = 3 => B = 3A => C = -4A. Chọn A = 1 => B = 3 => C = -4.
Phương trình mp (P): x + 3y - 4z - 3 = 0
Vậy có hai mặt phẳng thỏa yêu cầu.