K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2019

Ta thấy  không cùng phương nên ba điểm A, B, C không thẳng hàng.

M cách đều hai điểm A, B  nên điểm M nằm trên mặt trung trực của AB. M cách đều hai điểm B, C nên điểm M nằm trên mặt trung trực của B, C.

Do đó tập hợp tất cả các điểm m cách đều ba điểm A, B, C giao tuyến của hai mặt trung trực của AB và BC.

Gọi (P), (Q) lần lượt là các mặt phẳng trung trực của AB và BC. K(0; 3/2; 1/2) là trung điểm AB; N(1/2; -1/2; 1) là trung điểm BC.

(P) đi qua K và nhận  làm véctơ pháp tuyến nên (P):  hay (P): 2x - y + z + 1 = 0

(Q) đi qua N và nhận  làm véctơ pháp tuyến nên (Q):  hay (Q): 3x - 5y +2z - 6 = 0

Ta có Nên d có véctơ chỉ phương

Cho y = 0 ta sẽ tìm được x = -8, z = 15 nên (-8; 0; 15) ∈ d. Vậy .

8 tháng 4 2017

Đáp án A.

(loại B D).

Xét đáp án A ta có d qua M(-8;0;15)

2 tháng 8 2018

Đáp án A.

M là điểm thuộc tia đối của tia BA sao cho  A M B M = 2  nên B là trung điểm của AM.

20 tháng 12 2019

Đáp án đúng : D

25 tháng 11 2017

NV
4 tháng 2 2021

Gọi G là trọng tâm tam giác ABC \(\Rightarrow G\left(2;1;0\right)\)

\(T=MA^2+MB^2+MC^2\)

\(T=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)

\(T=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)

\(T=3MG^2+GA^2+GB^2+GC^2\)

Do \(GA^2+GB^2+GC^2\) cố định nên \(T_{min}\) khi \(MG_{min}\)

\(\Rightarrow M\) là hình chiếu vuông góc của G lên (P)

Gọi (d) là đường thẳng qua G và vuông góc (P) \(\Rightarrow\) pt (d): \(\left\{{}\begin{matrix}x=2+t\\y=1+t\\z=t\end{matrix}\right.\)

M là giao điểm (d) và (P) nên thỏa mãn:

\(2+t+1+t+t=0\Leftrightarrow t=-1\) \(\Rightarrow M\left(1;0;-1\right)\)

14 tháng 6 2017

Chọn đáp án C.

Gọi M(x;y;z) ta có

hệ điều kiện

28 tháng 7 2017

Đáp án B.

8 tháng 2 2019

Đáp án A.