K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

Ta có: đường thẳng CD là đường trung trực của đoạn thẳng AB nên CA=CB và DA=DB.

Ta có tam giác ABC cân tại C, tam giác DAB cân tại D

Suy ra \(\widehat {CAB} = \widehat {CBA};\widehat {DAB} = \widehat {DBA}\).

Vậy \(\widehat {CAB} - \widehat {DAB} = \widehat {CBA} - \widehat {DBA}\) suy ra: \(\widehat {CAD} = \widehat {CBD}\).

16 tháng 1 2017

a) Vì d là đường trug trực của AB mà C,D thuộc d nên: AC=BC =>tam giác ACB cân tại C=> Góc CAB= góc CBA   (1)

                                                                                 AD=BD=>tam giácABD cân tại D=> Góc DAB= góc DBA      (2)

  TỪ (1) và

18 tháng 1 2017

Chơi cả hỏi trên mạng à.

HQ
Hà Quang Minh
Giáo viên
17 tháng 9 2023

a) Ta có: đường thẳng a là đường trung trực của đoạn thẳng AB và CD nên \(a \bot AB;a \bot CD\).

Suy ra: AB // CD.

b) Đường thẳng a là đường trung trực của đoạn thẳng AB và CD nên MN là đường trung trực của đoạn thẳng AB và CD. Suy ra: MD = MC.

Xét tam giác vuông MNC và tam giác vuông MND có: ND = NC; MD = MC.

Vậy \(\Delta MNC = \Delta MND\)(cạnh huyền – cạnh góc vuông).

c) \(\Delta MNC = \Delta MND\)nên \(\widehat {CMN} = \widehat {DMN}\).

Mà \(\widehat {AMN} = \widehat {BMN} = 90^\circ \Rightarrow \widehat {AMN} - \widehat {DMN} = \widehat {BMN} - \widehat {CMN}\).

Vậy \(\widehat {AMD} = \widehat {BMC}\).

d) Xét hai tam giác AMD và BMC có:

     MA = MB;

     \(\widehat {AMD} = \widehat {BMC}\);

     MD = MC.

Vậy \(\Delta MAD = \Delta MBC\)(c.g.c). Suy ra: \(AD = BC,\widehat A = \widehat B\) (cặp cạnh và góc tương ứng).

e) \(\Delta MAD = \Delta MBC\) nên \(\widehat {ADM} = \widehat {BCM}\) (2 góc tương ứng).

\(\Delta MNC = \Delta MND\) nên \(\widehat {MCN} = \widehat {MDN}\) (2 góc tương ứng).

Vậy \(\widehat {ADM} + \widehat {MDN} = \widehat {BCM} + \widehat {MCN}\) hay \(\widehat {ADC} = \widehat {BCD}\).

18 tháng 1 2017

mik ko biết vẽ hình cơ

18 tháng 1 2017

gt , kl bn chép luôn cả đề vào là xong ý mà

17 tháng 9 2023

M là trung điểm của BC nên B, M, C thằng hàng → \(\widehat {BMC} = 180^\circ \). Mà \(\widehat {AMB} = \widehat {AMC}\)nên \(\widehat {AMB} = \widehat {AMC} = 180^\circ :2 = 90^\circ \)→ \(AM \bot BC\).

Vậy AM đi qua trung điểm M của đoạn thẳng BC và AM vuông góc với BC. Hay AM là đường trung trực của đoạn thẳng BC.

17 tháng 9 2023

loading... Ta có:

∠AMB + ∠AMC = 180⁰ (kề bù)

Mà ∠AMB = ∠AMC (gt)

⇒ ∠AMB = ∠AMC = 180⁰ : 2 = 90⁰

⇒ AM ⊥ BC

Mà M là trung điểm của BC

⇒ AM là đường trung trực của BC

18 tháng 1 2017

hỏi à

1 tháng 1

loading... a) Xét ∆AMB và ∆AMC có:

AB = AC (gt)

AM là cạnh chung

MB = MC (do M là trung điểm của BC)

⇒ ∆AMB = ∆AMC (c-c-c)

b) Do ∆AMB = ∆AMC (cmt)

⇒ ∠AMB = ∠AMC (hai góc tương ứng)

Mà ∠AMB + ∠AMC = 180⁰ (kề bù)

⇒ ∠AMB = ∠AMC = 180⁰ : 2 = 90⁰

⇒ AM ⊥ BC

c) Do ∆AMB = ∆AMC (cmt)

⇒ ∠ABM = ∠ACM (hai góc tương ứng)

⇒ ∠ABM = ∠HCM (1)

Do MH // AB (gt)

⇒ ∠ABM = ∠HMC (đồng vị) (2)

Từ (1) và (2) ⇒ ∠HMC = ∠HCM

Do ∆AMB = ∆AMC (cmt)

⇒ ∠MAB = ∠MAC (hai góc tương ứng)

⇒ ∠MAB = ∠HAM (3)

Do MH // AB (gt)

⇒ ∠MAB = ∠HMA (so le trong) (4)

Từ (3) và (4) ⇒ ∠HMA = ∠HAM