Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Vì OA, OB, OC đôi một vuông góc và M là trực tâm tam giác ABC => OM ⊥ (ABC)
Suy ra mp(ABC) nhận O M → làm véc tơ pháp tuyến và đi qua điểm M(1;2;3)
Vậy phương trình mp(P):
<=> x +2y+3z -14=0
Chọn D
Mặt cầu (S) có tâm I (-1;3;-2) và bán kính R = √29.
Mặt phẳng (P) chứa d có dạng m (4x-5y-10)+n (y-8z+10)=0
ó 4mx + (n – 5m)y – 8nz + 10n – 10m = 0 với m²+n²>0.
(P) tiếp xúc với (S) nên d (I, (P)) = R
Trường hợp 1: m = -n, phương trình mặt phẳng (P): 2x-3y+4z-10=0.
Khi đó giao điểm của (P) và Ox có tọa độ là (0;0;5/2) (nhận)
Trường hợp 2: m = -3n, phương trình mặt phẳng (P):x-2y+6z-10=0.
Khi đó giao điểm của (P) và Ox có tọa độ là (0;0;5/3) (loại).
Đáp án D.
Gọi A, B, C lần lượt là hình chiếu của M trên các trục Ox, Oy, Oz.
Suy ra A(1;0;0), B(0;2;0), C(0;0;3)
Phương trình:
Chọn D
Vì A thuộc Ox nên A(a;0;0).
Vì B thuộc Oy nên B(0;b;0).
Vì C thuộc Oz nên C(0;0;c).
G là trọng tâm tam giác ABC khi và chỉ khi
Đáp án B.