Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi BCNN(1;2;3;...;2000)=a
2000 số liên tiếp là:
a;a+1;a+2;...;a+1999
trong 2000 số đó thì a chia hết cho 1;2;3;...;1999
=>a;a+1;...;a+1999 là hợp số
=>có 2000 số tự nhiên liên tiếp là hợp số
Gọi A = 2 . 3 . 4 . 5 . . . . . 2016
A + 2 chia hết cho 2
A + 3 chia hết cho 3
.....
A + 2016 chia hết cho 2016
=> Trong dãy số tự nhiên có thể tìm được 2015 STN liên tiếp mà không có 1 SNT nào.
Xét dãy các số: \(\left(n+1\right)!+2,\left(n+1\right)!+3,...,\left(n+1\right)!+n+1\).
Có \(\left(n+1\right)!+k⋮k\)mà \(\left(n+1\right)!+k>k\)nên số đó là hợp số.
Vậy dãy số trên gồm toàn hợp số.
Trong tập hợp số tự nhiên hãy tìm một dãy 2000 số tự nhiên liên tiếp mà không có 1 số nguyên tố nào?
Có. Nếu lấy A = 2.3.4....2015.2016.2017, thì A chia hết cho 2, 3, ..., 2015, 2016, 2017.
Và dãy 2015 số bắt đầu từ A+2 đều là hợp số:
A + 2; A + 3; ....; A + 2015; A + 2016; A + 2017
Bởi vì A + 2 chia hết cho 2
A + 3 chia hết cho 3
.....
A + 2015 chia hết cho 2015
A + 2016 chia hết cho 2016
A + 2017 chia hết cho 2017
Chắc là không em à ! Đến lớp cô giảng cho !