K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2017

Ta có:
vt AB(Xb-Xa;Yb-Ya)=(-3-2;-1-4)=(-5;-5)
vt BC(Xc-Xb;Yc-Yb)=(-2+3;1+1)=(1;2)
vt CA(Xa-Xc;Ya-Yc)=(2+2;4-1)=(4;3)
vt AC(Xc-Xa;Yc-Ya)=(-2-2;1-4)=(-4;-3)
=>-5/-5 khác -4/-3 =>3 điểm A,B,C không thẳng hàng

Gọi phương trình đường thẳng AB là \(d:y=ax+b\)  

Vì d đi qua \(A\left(2;4\right)\) \(\Rightarrow2a+b=4\)

Vì d đi qua \(B\left(-3;-1\right)\) \(\Rightarrow-3a+b=-1\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\) \(\Rightarrow d:y=x+2\)

Thay \(C\left(-2;1\right)\) vào \(y=x+2\) ta thấy: \(-2+2\ne1\)

  \(\Rightarrow C\notin AB\)

  Vậy A, B, C không thẳng hàng

 

7 tháng 3 2017

Xét A có: x=1 ; y=-1

=> a=y/x = -1/1 =-1

Xét B có: x=2 ; y=1

=> a=y/x=1/2=0.5

Xét c có : x=4 ; y=5

=> a=y/x=5/4=1.25

Vì a khác nhau nên A;B;C không thẳng hàng

11 tháng 4 2017

Bạn tìm đường thẳng đi qua 2 điểm A và B là \(\frac{x-x_a}{x_b-x_a}=\frac{y-y_a}{y_b-y_a}\)rồi thay tọa độ điểm C vào thấy k thỏa mãn phương trình đường thẳng thì => 3 điểm này k thẳng hàng

NV
13 tháng 12 2020

a. Gọi pt đường thẳng AB có dạng \(y=ax+b\)

Do đường thẳng AB qua A và B nên ta có:

\(\left\{{}\begin{matrix}2a+b=3\\-a+b=-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=2\\b=-1\end{matrix}\right.\)

Phương trình AB: \(y=2x-1\) \(\Rightarrow\) hệ số góc \(a=2\)

b. Thay tọa độ C vào pt AB:

\(-1=2.0-1\) (thỏa mãn)

\(\Rightarrow C\) thuộc đường thẳng AB hay 3 điểm A;B;C thẳng hàng

13 tháng 12 2020

undefined

AH
Akai Haruma
Giáo viên
16 tháng 11 2018

Lời giải:

Gọi phương trình đường thẳng $AB$ là $y=ax+b$

Khi đó: \(\left\{\begin{matrix} 4=2a+b\\ -1=-3a+b\end{matrix}\right.\Rightarrow 5a=5\Rightarrow a=1\Rightarrow b=2\)

Vậy ptđt $AB$ có dạng $y=x+2$

Lại thấy: \(1\neq (-2)+2\) nên $C$ không thể thuộc đường thẳng $AB$

Suy ra $A,B,C$ không thẳng hàng. Bạn xem lại đề.

16 tháng 11 2018

Gọi \(A\left(x_1;y_1\right);B\left(x_2;y_2\right);C\left(x_3;y_3\right)\)

Độ dài AB: \(AB=\sqrt{\left(x_1-x_2\right)^2+\left(y_1-y_2\right)^2}\)

\(=\sqrt{\left(2-\left(-3\right)\right)^2+\left(4-\left(-1\right)^2\right)}\) \(=5\sqrt{2}\) (đvđd)

Độ dài BC: \(BC=\sqrt{\left(\left(-3\right)-\left(-2\right)\right)^2+\left[\left(-1\right)-1\right]^2}\)

\(=\sqrt{\left(-1\right)^2+\left(-2\right)^2}\) \(=\sqrt{1+4}=\sqrt{5}\)(đvđd)

\(AC=\sqrt{\left(2-\left(-2\right)\right)^2+\left(4-1\right)^2}=5\)(đvđd)

\(\Rightarrow AB+BC\ne AC\)\(\Rightarrow A,B,C\) không thẳng hàng

10 tháng 11 2015

Gọi pt đường thẳng AB có dạng y =ax + b 

Tọa độ các điểm A ; B thỏa mãn pt y = ax + b nên ta có hpt :

3 = 2a + b 

-3 = -a + b 

.....