K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 7 2017

Đáp án: A

17 tháng 1 2018

Đáp án: A

Vì x2 + 4 > 0  ∀x ∈ R nên A = .

(x2 - 4)(x2 + 1) = 0   (x2 - 4) = 0  x =  ±2  nên B = {-2; 2}.

|x| < 2 ⇔ -2 < x < 2 nên D = (-2; 2).

 => A  B = C  D.

Chọn B

30 tháng 1 2022

Chọn D 

16 tháng 1 2018

Đáp án: D

(x2 - 4) (x2 - 1) = 0  x = ±2; x =  ±1 nên A = {-2; -1; 1; 2}

(x2 - 4) (x2 + 1) = 0  x2 - 4 = 0 ⇔ x = ±2 nên B = {-2;  2}

x4 - 5x2 + 4)/x = 0  x4 - 5x2 + 4 = 0 ⇔ x = ±2; x =  ±nên D = {-2; -1; 1; 2}

=> A = D

15 tháng 5 2021

\(\text{f(x)}\)\(\text{>0}\)\(\text{⇔}\)\(\text{2x}\)2\(\text{-3x+1}\)\(>0\)\(\left\{{}\begin{matrix}x>1\\x< \dfrac{1}{2}\end{matrix}\right.\)

x(;\(\dfrac{1}{2}\))(1;+)

 

17 tháng 8 2023

Ta có tập nghiệm của phương trình là:

\(\left(x+2\right)\left(2x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-1=0\\x-3=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\2x=1\\x=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{1}{2}\\x=3\end{matrix}\right.\)

Tập hợp S là:

\(S=\left\{-2;\dfrac{1}{2};3\right\}\)

Lần lược các phương án:

A. \(-2\in S\) (đúng)

B. \(3\in S\) (đúng)

C. \(2\in S\) (Sai)

D. \(\dfrac{1}{2}\in S\) (Đúng)

⇒ Chọn C

30 tháng 11 2018

Đáp án C

Xét khẳng định C:

Nếu đường thẳng d đi qua gốc tọa độ O thì đường thẳng d có vectơ chỉ phương là OM →  = (2; -1; 1)

Do u d → . n p →  = 2.1 - 1.1 + 1.1 = 2 ≠ 0 nên đường thẳng d không song song với mặt phẳng (P)

(mâu thuẫn giả thiết)

Vậy khẳng định C là sai.

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Các khẳng định là mệnh đề là:

a) \(3 + 2 > 5\)

d) \(1 - \sqrt 2  < 0\)

Các khẳng định là mệnh đề chứa biến là:

b) \(1 - 2x = 0\)

c) \(x - y = 2\)

12 tháng 6 2017

a) Ta có: 8 > 4 nên để 8x > 4x thì x > 0

Do đó, chỉ đúng khi x > 0 (hay nói cách khác nếu x < 0 thì a sai)

b) Ta có: 4 < 8 nên để 4x > 8x thì x < 0 .

Do đó, khẳng định chỉ đúng khi x < 0

c) chỉ đúng khi x ≠ 0

d) Ta có: 8 > 4 nên với mọi x thì 8+ x > 4+ x ( tính chất cộng hai vế của BĐT với 1 số)

Do đó, khẳng định đúng với mọi x.

Vậy khẳng định d là đúng với mọi giá trị của x.