Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Câu (1) và (5) không là mệnh đề (vì là câu cảm thán, câu hỏi)
Các câu (3), (4), (6) là những mệnh đề đúng
Câu (2), (7) và (8) là những mệnh đề sai.
Vậy có 6 mệnh đề.
1/Trong các mệnh đề sau, mệnh đề nào sai?
A. Tất cả các số tự nhiên đều không âm.
B. Nếu tứ giác có hai đường chéo cắt nhau tại trung điểm mỗi đường thì tứ giác là hình bình hành. (sai)
C. Nếu tứ giác là hình chữ nhật thì tứ giác có hai đường chéo bằng nhau.
D. Nếu tứ giác là hình thoi thì tứ giác có hai đường chéo vuông góc với nhau.
câu 2 không biết làm
Đáp án: A
b, c, e là mệnh đề, mệnh đề b, e là mệnh đề đúng.
Mệnh đề c sai vì π là số nhỏ hơn 4.
a, d là câu hỏi chưa biết tính đúng sai nên không là mệnh đề.
Đáp án: B
a sai vì trực tâm là giao điểm của ba đường cao, không phải ba đường phân giác.
b sai vì hai đường chéo của hình bình hành không bằng nhau.
c, d, e đúng.
a)
Mệnh đề \(P \Rightarrow Q\): “Nếu tứ giác ABCD là hình vuông thì nó là hình chữ nhật có hai đường chéo vuông góc với nhau”
Mệnh đề \(Q \Rightarrow P\): “Nếu tứ giác ABCD là hình chữ nhật có hai đường chéo vuông góc với nhau thì nó là hình vuông”
b)
Theo dấu hiệu nhận biết hình vuông, hai mệnh đề \(P \Rightarrow Q\) và \(Q \Rightarrow P\) đều đúng. Do đó, P và Q là hai mệnh đề tương đương. Ta có thể phát biểu thành định lí như sau:
“Tứ giác ABCD là hình chữ nhật có hai đường chéo vuông góc với nhau là điều kiện cần và đủ để nó là hình vuông”
Hoặc “Tứ giác ABCD là hình vuông khi và chỉ khi nó là hình chữ nhật có hai đường chéo vuông góc với nhau”
+) Mô tả tập hợp D = {các hình vuông}
+) Mô tả tập hợp C = {các hình bình hành có hai đường chéo vuông góc} = {Các hình thoi}.
Thật vậy,
Xét tứ giác ABCD, là hình hình hành có hai đường chéo vuông góc.
Gọi \(AC \cap BD = O\) thì O là trung điểm của AC và BD.
Ta có: AO vừa là trung tuyến vừa là đường cao.
\( \Rightarrow \Delta ABD\) cân tại A.
\( \Rightarrow AB = AD\).
Tương tự ta cũng có: \(CB = CD\).
Mà \(AB = CD;\;AD = BC\).
Do đó: \(AB = CD = \;AD = BC\) hay tứ giác ABCD là hình thoi.
a) Vì nhiều hình thoi (các hình thoi không có góc nào vuông) thì không phải là hình vuông, nên \(C\not{ \subset }D\).
Vậy mệnh đề “\(C \subset D\)” sai.
b) Vì mỗi hình vuông cũng là một hình thoi (hình thoi đặc biệt: có một góc vuông), nên các phần tử của D cũng là phần tử của C. Hay \(C \supset D\)
Do đó mệnh đề “\(C \supset D\)” đúng.
c) Vì \(\left\{ \begin{array}{l}C \subset D\\C \supset D\end{array} \right.\;\; \Rightarrow C \ne D\)
Vậy mệnh đề “\(C = D\)” sai.
Ta xét từng câu:
(I) Hải Phòng có phải là một thành phố trực thuộc Trung ương không?
Đây là câu hỏi, không phải mệnh đề.
(II) Hai vectơ có độ dài bằng nhau thì bằng nhau.
Đây có là mệnh đề.Mệnh đề này sai.
Hai vecto được gọi là bằng nhau nếu chúng có cùng hướng và độ dài bằng nhau.
(III) Một tháng có tối đa 5 ngày chủ nhật.
Đây có là mệnh đề và là 1 mệnh đề đúng.
(IV) 2019 là một số nguyên tố.
Đây có là mệnh đề.
Ta có : 2019= 3. 673 nên 2019 là hợp số. Mệnh đề này sai.
(V) Đồ thị của hàm số y = a x 2 ( a ≠ 0 ) là một đường parabol.
Đây là mệnh đề đúng.
(VI) Phương trình bậc hai a x 2 + b x + c = 0 ( a ≠ 0 ) có nhiều nhất là 2 nghiệm.
Đây là mệnh đề đúng.
Như vậy có tất cả 5 mệnh đề và 3 mệnh đề đúng.
Đáp án B
a) Điều kiện cần và đủ để một số chia hết cho 9 là tổng các chữ số của nó chia hết cho 9.
b) Một hình bình hành có các đường chéo vuông góc là điều kiện cần và đủ để nó là một hình thoi.
c) Để phương trình bậc hai có hai nghiệm phân biệt, điều kiện cần và đủ là biệt thức của nó dương.
Đáp án A
Câu “Buồn ngủ quá!” là câu cảm thán, không xét được tính đúng sai nên không phải mệnh đề.