K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2018

Chọn D.

 

Ta có: z = -121 nên z = (11i)2 .

Do đó z có hai căn bậc hai là z = 11i  và z = -11i.

19 tháng 9 2019

Đáp án A.

25 tháng 7 2017

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

15 tháng 2 2019

 

 

1 tháng 4 2017

± i√7 ; ± i2√2 ; ± i2√3; ± i2√5 ; ± 11i

28 tháng 1 2017

Đáp án D

21 tháng 12 2017

Đáp án: D.

NV
20 tháng 4 2019

Câu 1:

\(f\left(x\right)=\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}-\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}=m\)

Tọa độ hóa bài toán bằng cách gọi \(A\left(-\frac{1}{2};\frac{\sqrt{3}}{2}\right)\)\(B\left(\frac{1}{2};\frac{\sqrt{3}}{2}\right)\) là hai điểm cố định trên mặt phẳng tọa độ Oxy, M là điểm di động có tọa độ \(M\left(x;0\right)\)

\(\Rightarrow AM=\left|\overrightarrow{AM}\right|=\sqrt{\left(x+\frac{1}{2}\right)^2+\left(0-\frac{\sqrt{3}}{2}\right)^2}=\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\)

\(BM=\left|\overrightarrow{BM}\right|=\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\)

\(\Rightarrow f\left(x\right)=AM-BM\)

Mặt khác, theo BĐT tam giác ta luôn có

\(\left|AM-BM\right|< AB=\sqrt{\left(\frac{1}{2}+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}\right)^2}=1\)

\(\Rightarrow\left|f\left(x\right)\right|< 1\Rightarrow\left|m\right|< 1\Rightarrow-1< m< 1\)

NV
20 tháng 4 2019

Câu 2:

ĐKXĐ: \(1\le x\le3\)

Đặt \(\sqrt{x-1}+\sqrt{3-x}=a\ge0\)

Áp dụng BĐT Bunhiacốpxki:

\(\Rightarrow a\le\sqrt{\left(1+1\right)\left(x-1+3-x\right)}=2\sqrt{2}\)

Mặt khác

\(a^2=x-1+3-x+2\sqrt{\left(x-1\right)\left(3-x\right)}=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\ge2\)

\(\Rightarrow2\le a\le3\)

Cũng từ trên ta có:

\(a^2=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\Rightarrow\sqrt{\left(x-1\right)\left(3-x\right)}=\frac{a^2-2}{2}=\frac{1}{2}a^2-1\)

Phương trình trở thành:

\(a-\left(\frac{1}{2}a^2-1\right)=m\)

\(\Leftrightarrow-\frac{1}{2}a^2+a+1=m\)

Xét hàm \(f\left(a\right)=-\frac{1}{2}a^2+a+1\) trên \(\left[2;2\sqrt{2}\right]\)

\(f'\left(a\right)=-a+1< 0\) \(\forall a\in\left[2;2\sqrt{2}\right]\)

\(\Rightarrow f\left(a\right)\) nghịch biến trên \(\left[2;2\sqrt{2}\right]\)

\(\Rightarrow f\left(2\sqrt{2}\right)\le f\left(a\right)\le f\left(2\right)\Rightarrow-3+2\sqrt{2}\le f\left(a\right)\le1\)

Vậy:

- Nếu \(\left[{}\begin{matrix}m>1\\m< -3+2\sqrt{2}\end{matrix}\right.\) thì phương trình vô nghiệm

- Nếu \(-3+2\sqrt{2}\le m\le1\) pt có nghiệm

19 tháng 8 2017

Căn bậc hai của một số thực dương a là một số thực b sao cho b 2  = a.

14 tháng 12 2017