K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trong bão học, xoáy thuận là khối không khí lớn xoay quanh một vùng áp suất thấp mạnh.[1][2] Xoáy thuận được đặc trưng bởi gió xoáy vào trong và xoay quanh một vùng áp suất thấp.[3][4]

Các hệ thống áp suất thấp lớn nhất là các xoáy cực (Polar vortex) và xoáy thuận ngoài nhiệt đới với quy mô lớn nhất (synoptic scale). Các xoáy thuận lõi ấm như xoáy thuận nhiệt đới và các xoáy thuận cận nhiệt đới cũng nằm trong quy mô này. Các xoáy thuận cỡ trung, lốc xoáy và lốc cát thuộc quy mô trung nhỏ hơn [5]. Các xoáy thuận cấp cao có thể tồn tại mà không có vùng áp suất thấp ở bề mặt, và có thể chụm lại từ đáy của vùng áp suất thấp nhiệt đới thuộc phần trên của tầng đối lưu trong những tháng mùa hè ở Bắc bán cầu. Các xoáy thuận cũng xuất hiện trên các hành tinh ngoài trái đất, chẳng hạn như sao Hỏa và sao Hải Vương [6][7]. Sự hình thành xoáy thuận mô tả quá trình hình thành và cường độ của xoáy thuận [8]. Các xoáy thuận ngoại nhiệt đới bắt đầu như là những đợt sóng ở các vùng rộng lớn có độ tương phản nhiệt độ vĩ độ trung mở rộng được gọi là các vùng baroclinic. Các vùng này kết giao và tạo thành frông thời tiết khi sự lưu hành xoáy đóng kín và tăng cường. Sau đó trong chu kỳ sống của chúng, các xoáy thuận ngoài nhiệt đới hấp lưu khi không khí lạnh làm giảm khí nóng và trở thành hệ thống lõi lạnh. Xích lốc của Một tuyến đường của xoáy thuận được hướng dẫn trong suốt vòng đời của nó từ 2 đến 6 ngày nhờ luồng lái của dòng tia cận nhiệt đới.

0
Các Polar High là các khu vực có áp suất khí quyển cao xung quanh các cực Bắc và cực Nam ; Polar High hoạt động cực bắc mạnh hơn vì đất tăng và mất nhiệt hiệu quả hơn biển. Nhiệt độ lạnh ở các vùng cực khiến không khí hạ xuống tạo ra áp suất cao, giống như nhiệt độ ấm quanh xích đạo làm cho không khí tăng lên tạo ra vùng hội tụ giữa các áp suất thấp. Không khí tăng cũng xảy ra...
Đọc tiếp

Các Polar High là các khu vực có áp suất khí quyển cao xung quanh các cực Bắc và cực Nam ; Polar High hoạt động cực bắc mạnh hơn vì đất tăng và mất nhiệt hiệu quả hơn biển. Nhiệt độ lạnh ở các vùng cực khiến không khí hạ xuống tạo ra áp suất cao, giống như nhiệt độ ấm quanh xích đạo làm cho không khí tăng lên tạo ra vùng hội tụ giữa các áp suất thấp. Không khí tăng cũng xảy ra dọc theo các dải áp thấp nằm ngay dưới các cực cao xung quanh vĩ tuyến thứ 50 của vĩ độ. Các vùng hội tụ ngoài hành tinh này bị chiếm giữ bởi các Frông cực nơi các khối không khí có nguồn gốc cực gặp nhau và đụng độ với các vùng có nguồn gốc nhiệt đới hoặc cận nhiệt đới. Sự hội tụ của không khí tăng này hoàn thành chu kỳ thẳng đứng xung quanh Hoàn lưu khí quyển ở mỗi bán cầu vĩ độ. Liên quan chặt chẽ đến khái niệm này là xoáy cực .

Nhiệt độ bề mặt dưới các Polar High là lạnh nhất trên Trái đất, không có tháng nào có nhiệt độ trung bình trên mức đóng băng. Các khu vực dưới cực cao cũng trải qua lượng mưa rất thấp, dẫn đến chúng được gọi là "sa mạc cực ".

Luồng không khí đi ra ngoài từ các cực để tạo ra các cơn gió đông cực trong Bắc Cực và Nam Cực khu vực này.

0
Một polar low là một hệ thống áp suất thấp (depression) trong không khí chỉ tồn tại trong thời gian ngắn, quy mô nhỏ, được thấy ở các khu vực đại dương hướng cực của frông cực ở cả bán cầu Bắc và Nam. Các hệ thống thường có quy mô chiều ngang dưới 1.000 km (620 mi) và tồn tại không quá hai ngày. Chúng là một phần của cấp lớn hơn thuộc hệ thống thời tiết quy mô trung (mesoscale). Polar...
Đọc tiếp

Một polar low là một hệ thống áp suất thấp (depression) trong không khí chỉ tồn tại trong thời gian ngắn, quy mô nhỏ, được thấy ở các khu vực đại dương hướng cực của frông cực ở cả bán cầu Bắc và Nam. Các hệ thống thường có quy mô chiều ngang dưới 1.000 km (620 mi) và tồn tại không quá hai ngày. Chúng là một phần của cấp lớn hơn thuộc hệ thống thời tiết quy mô trung (mesoscale). Polar low có thể khó được phát hiện bằng cách sử dụng báo cáo thời tiết thông thường và gây nguy hiểm đối với các hoạt động ở vĩ độ cao, chẳng hạn như việc chuyên chở đường biển và các trạm dầu khí. Những cơn bão mùa đông như vậy có thể gây ra tình trạng lạnh giá và mất mùa. Polar low đã được đề cập đến bởi nhiều thuật ngữ khác, chẳng hạn nhưpolar mesoscale vortex, Arctic hurricane, Arctic low, và cold air depression. Ngày nay thuật ngữ này thường được dành riêng cho các hệ thống mạnh hơn có gió gần mặt đất ít nhất là 17 m / s (38 mph).

0
Chương I. Sự hình thành vũ trụ và hệ mặt trời.- Ban đầu là một cõi hỗn mang, không lí thuyết nào có thể mô tả được. Tại một điểm kì dị, ánh sáng bùng phát khai sinh ra vật chất, năng lượng, thời gian và không gian. Đó là vụ nổ Bigbang - vụ nổ của sự sáng thế. - BigBang tạo ra vật chất và phản vật chất. Hai loại này kết hợp với nhau tạo ra ánh sáng lan tỏa khắp vũ trụ. Vật...
Đọc tiếp

Chương I. Sự hình thành vũ trụ và hệ mặt trời.

- Ban đầu là một cõi hỗn mang, không lí thuyết nào có thể mô tả được. Tại một điểm kì dị, ánh sáng bùng phát khai sinh ra vật chất, năng lượng, thời gian và không gian. Đó là vụ nổ Bigbang - vụ nổ của sự sáng thế.

- BigBang tạo ra vật chất và phản vật chất. Hai loại này kết hợp với nhau tạo ra ánh sáng lan tỏa khắp vũ trụ. Vật chất còn sót lại dưới dạng các đám khí loãng. Sau thời gian dài, lực hấp dẫn khiến các đám mây khí tụ lại sinh ra các ngân hà, các hành tinh....

- 10 tỷ năm sau BigBang, ngoài rìa của dải Ngân Hà có một ngôi sao đang tàn lụi. Nó suy sụp do lực hấp dẫn và kết thúc cuộc đời mình bằng 1 vụ nổ sinh ra 1 đám khí, có thành phần chính là Hydro. Dưới tác dụng của lực xung kích từ các vụ nổ siêu tân tinh, các đám khí dần tụ lại và chuyển động xoáy tròn quanh tâm. Chính vì chuyển động xoay tròn này phát sinh lực ly tâm khiến cho hệ mặt trời có dạng hình đĩa dẹt.

- BigBang tạo ra vật chất và phản vật chất. Hai loại này kết hợp với nhau tạo ra ánh sáng lan tỏa khắp vũ trụ. Vật chất còn sót lại dưới dạng các đám khí loãng. Sau thời gian dài, lực hấp dẫn khiến các đám mây khí tụ lại sinh ra các ngân hà, các hành tinh....

- 10 tỷ năm sau BigBang, ngoài rìa của dải Ngân Hà có một ngôi sao đang tàn lụi. Nó suy sụp do lực hấp dẫn và kết thúc cuộc đời mình bằng 1 vụ nổ sinh ra 1 đám khí, có thành phần chính là Hydro. Dưới tác dụng của lực xung kích từ các vụ nổ siêu tân tinh, các đám khí dần tụ lại và chuyển động xoáy tròn quanh tâm. Chính vì chuyển động xoay tròn này phát sinh lực ly tâm khiến cho hệ mặt trời có dạng hình đĩa dẹt.

Ghi chú: Vì sao đám khí khi tụ lại thì chúng sẽ chuyển động theo vòng xoáy? Đó là do momen động lượng.
Thực tế các hiện tượng chúng ta quan sát trên Trái Đất cũng cho thấy điều này. Gió từ các hướng tụ vào sinh bão thì cơn bão đó cũng có hình xoáy ốc.

Các hành tinh cũng từ các dòng vật chất xoáy tạo thành, vì vậy chúng quay quanh trục của chính mình, và khối khí tạo thành hệ mặt trời ban đầu cũng chuyển động xoáy nên các hành tinh tạo từ đám khí ấy cũng sẽ theo quán tính mà quay quanh mặt trời.

Như vậy: chuyển động quay quanh trục của hành tinh, chuyển động quay của các hành tinh quanh mặt trời và chuyển động của mặt trời quanh dải Ngân Hà được giải thích là do quán tính ban đầu của khối khí xoáy tạo thành chúng. Hệ mặt trời, dải ngân hà đều có dạng đĩa dẹt là do lực li tâm khi khối khí xoay tròn tạo nên.

Mặt Trời hình thành ở trung tâm của đám khí xoáy, phản ứng nhiệt hạch được kích hoạt. Nó bắt đầu tỏa ra năng lượng và gió mặt trời, thổi bay các loại khí nhẹ ra xa. Do đó mà Kim Tinh, Thủy Tinh và Trái Đất được cấu tạo từ những vật chất nặng như sắt, oxi, silic,...còn các hành tinh xa hơn cấu tạo từ các loại khí nhẹ.

Trái Đất được hình thành không ở quá gần Mặt Trời để bị đốt nóng và không ở quá xa Mặt Trời để bị chìm trong băng giá. Chu kì quay quanh trục của Trái Đất là 24h, cho chúng ta ngày và đêm kéo dài 12h.

Chương II. Trái Đất, những điều kiện hình thành sự sống.

Thuở mới hình thành, hệ mặt trời ắt hẳn còn rất lộn xộn. Vô số các thiên thạch nằm rải rác trên đường đi của các hành tinh và chúng thường xuyên "oanh tạc" các hành tinh này. Những cú va chạm với các thiên thạch cỡ lớn có thể làm nghiêng trục của các hành tinh. Trái Đất cũng là 1 trong số ấy. Những cú va chạm như thế khiến Trục Trái Đất nghiêng đi 1 góc khoảng 23 độ.
Chính vì trục Trái Đất bị nghiêng nên chúng ta mới có được 4 mùa với 4 sắc thái khác nhau.

- Hình thành mặt trăng.

Mặt Trăng là 1 vệ tinh khá kì lạ, nó khá to so với 1 vệ tinh thông thường. Thành phần đá trên mặt Trăng khá giống với Trái Đất (lấy mẫu từ chuyến thám hiểm Mặt Trăng năm 1969).
Có rất nhiều giả thuyết về sự hình thành của Mặt Trăng, giả thuyết được công nhận nhiều nhất là "Mặt Trăng hình thành từ Trái Đất".

Vào thời kì hệ mặt trời còn lộn xộn, một thiên thạch lớn đã đâm sầm vào Trái Đất. Cú va chạm khủng khiếp khiến 1 phần vật chất của Trái Đất văng vào không gian, sau đó tụ lại thành Mặt Trăng. Phần lõi sắt bền vững của thiên thạch chui sâu vào tâm Trái Đất và trở thành lõi Trái Đất. Điều này giải thích tại sao Trái Đất của chúng ta có lõi.

Sự hình thành của mặt Trăng có ý nghĩa rất lớn đối với sự sống. Việc một phần khối lượng của Trái Đất phân bố ra xa khiến momen quán tính của nó tăng lên, tốc độ quay của Trái Đất giảm và quỹ đạo của Trái Đất ổn định hơn. Lực hấp dẫn của Mặt Trăng cũng gây ra hiện tượng thủy triều trên biển, góp phần vào việc tăng đa dạng sinh học.

Có một điều thú vị là thông qua tìm hiểu các hóa thạch sống là "ốc anh vũ", người ta nhận thấy ngày xưa chu kì Mặt Trăng ngắn hơn bây giờ (chỉ có 7, 8 ngày so với 30 ngày hiện tại). Điều này chứng tỏ ngày xưa Mặt Trăng khá gần Trái Đất. Do lực li tâm, Mặt Trăng đang chuyển động xa Trái Đất theo thời gian. Có thể trong tương lai ngày trên Trái Đất sẽ dài hơn.

- Sao chổi mang nước đến hành tinh.

Nước trên Trái Đất từ đâu mà có? Thuở mới hình thành, những cú va chạm mạnh khiến nước không thể tồn tại được trên bề mặt hành tinh. Nước trên Trái Đất có lẽ được mang đến từ những ngôi sao chổi - nguồn nước dồi dào trong hệ mặt trời. Ngoài ra, trên những ngôi sao chổi này có khá nhiều chất hữu cơ - viên gạch của sự sống. Nhiều nhà khoa học cho rằng rất có thể sao chổi chính là "vị thần" gieo sự sống xuống Trái Đất. Bên cạnh đó cũng có nhiều người lại cho rằng sự sống bắt nguồn từ núi lửa.

- Những cấu trúc tạo nên cái nôi cho sự sống.

Ngoài những điều kiện như: sự ổn định của quỹ đạo Trái Đất, nước và các chất hữu cơ gieo mầm sự sống...Trái Đất còn có 1 số cấu trúc đặc biệt để bảo vệ sự sống.

+ Bầu khí quyển: Trái Đất có lực hấp dẫn đủ lớn, cho phép nó có bầu khí quyển của riêng mình. Bầu khí quyển là lá chắn cơ học của sự sống, giúp chúng ta thoát khỏi những vụ va chạm với thiên thạch cỡ nhỏ. Những thiên thạch này đi vào khí quyển sẽ chịu ma sát và sức cản rất lớn của không khí, khiến nó nổ tung thành nhiều mảnh và tiêu biến (chính là sao băng mà chúng ta hay thấy). Ngoài ra nó cũng là lá chắn quang học giúp chúng ta thoát khỏi những tia bức xạ mạnh từ mặt trời và vũ trụ (tác nhân gây ung thư).

+ Từ trường Trái Đất: Từ trường Trái Đất do những cuộn xoáy của sắt lỏng bên trong nhân Trái Đất gây ra. Nếu như khí quyển là là chắn cơ học thì từ trường chính là lá chắn điện từ. Vào những ngày mặt trời hoạt động mạnh, nó sẽ có những điểm bùng nổ và phun về phía Trái Đất một lượng vật chất ở dạng ion (gọi là bão Mặt Trời). Từ trường Trái Đất sẽ đánh bật các ion này ra 2 cực (hiệu ứng lực Lorenxo).
Ở vùng cực, các ion này đi vào khí quyển phát sáng sinh ra cực quang Bắc cực.​

Chương III: Trái Đất luôn vận động.

- Bên trong Trái Đất có một nguồn nhiệt khổng lồ, được duy trì bằng sự phân rã các chất phóng xạ. Chính nguồn năng lượng này đã gây ra những hoạt động địa chất như núi lửa, động đất, kiến tạo địa hình, sự trôi dạt lục địa.....

Để tìm hiểu cơ chế của những hình thái vận động này, trước hết chúng ta cần tìm hiểu cấu tạo Trái Đất.

- Cấu tạo Trái Đất.

Có thể chia Trái Đất thành 3 lớp chính:

+ Lớp vỏ ngoài được cấu tạo từ đá rắn.
+ Lớp manti ở dạng dung nham lỏng.
+ Nhân Trái Đất là lõi sắt cứng.

Lớp vỏ ngoài không phải là 1 mảng liên tục mà đứt gãy thành nhiều mảng nhỏ, người ta gọi đó là các mảng kiến tạo. Các mảng kiến tạo này trôi nổi trên bề mặt lớp manti.

Lớp manti cũng không phải là một khối dung nham tĩnh lặng. Nó luôn có những dòng đối lưu từ nhân lên đáy vỏ Trái Đất.

- Núi lửa.

Núi lửa hình thành do magma từ lớp manti phun trào thông qua những khe hở hoặc những chỗ yếu giữa các mảng lục địa.

Trên thế giới nổi tiếng nhất là "vành đai lửa Thái Bình Dương".

Núi lửa cung cấp một lượng chất hữu cơ - vô cơ lớn cho sự sống phát triển. Nó cũng từng cứu Trái Đất thoát khỏi thời kỳ băng hà. Tuy nhiên núi lửa hoạt động quá mạnh cũng có thể hủy diệt sự sống bằng việc phun quá nhiều khí - bụi vào khí quyển khiến che lấp ánh sáng Mặt Trời, đưa Trái Đất trở về với kỷ băng hà.

- Động đất

Lớp manti không phải là 1 khối magma tĩnh. Càng gần tâm Trái Đất, nhiệt độ càng cao. Càng gần bề mặt lục đại, nhiệt độ càng thấp. Vì vậy, bên trong lớp manti này luôn có các dòng đối lưu. Phần magma gần tâm Trái Đất nóng hơn sẽ trồi ra ngoài, còn phần sát bề mặt lục địa bị lạnh đi sẽ chìm vào tâm.

Chính các dòng đối lưu này đã đẩy các mảng kiến tạo nổi trên chúng di chuyển - hoặc tiến sát vào nhau hoặc tách nhau ra.

Khi hai mảng kiến tạo tiến vào nhau, mảng đại dương chìm xuống (do đá dưới đại dương chịu sức ép lớn sẽ có mật độ cao hơn). Ma sát nghỉ giữa các lớp đá sẽ ngăn chúng trượt lên nhau, điều này khiến các lớp đất đá tại chỗ tiếp xúc bị nén lại (biến dạng đàn hồi). Chúng tích trữ thế năng đàn hồi lớn dần theo thời gian. Khi lực đàn hồi đã thắng ma sát, các lớp đá trượt lên nhau 1 cách đột ngột, giải phóng năng lượng sinh ra động đất, kèm sau đó sẽ là sóng thần.

- Sự kiến tạo núi:

Khi hai mảng lục địa - lục địa xô vào nhau, do sự đồng đều về mặt độ đá nên không có hiện tượng mảng này chìm xuống dưới mảng kia, mà chúng sẽ cùng trồi lên sinh ra các dãy núi hùng vĩ.

Sự vận động bên trong Trái Đất là 1 phần tất yếu của tự nhiên, nó khiến cho sự sống trên hành tinh phải học cách thích nghi theo. Có những lúc nó đưa sự sống đến gần bờ tiệt diệt, cũng có lúc nó cứu sự sống khỏi sự diệt vong.

Chương IV: Những giai đoạn thăng trầm của sự sống.

Do sự vận động không ngừng của Trái Đất: sự phun trào núi lửa, sự hợp - tan của các lục địa....và cả những sự công kích của các thiên thạch mà sự sống trên Trái Đất trải qua những giai đoạn thăng - trầm khác nhau. Sự sống rất dễ bị "tổn thương", chỉ cần sự thay đổi nhẹ về địa chất - khí hậu sẽ ảnh hưởng nghiêm trọng đến hệ sinh vật trên hành tinh. Có những thời kì "đại tuyệt chủng" trong quá khứ, sự sống đứng bên bờ diệt vong, cũng có những thời kì thuận lợi, các sinh vật phát triển với kích thước lớn chưa từng thấy.

Sở dĩ sự sống có thể tồn tại mạnh mẽ như vậy là nhờ tạo hóa đã ban cho chúng ta 2 cơ chế để thích nghi với các điều kiện biến đổi của môi trường, đó là "đột biến" và "thường biến". Thường biến là những biến đổi của cơ thể trong môi trường sống, không có tính di truyền, còn đột biến là những biến đổi trong hệ gen, có di truyền.

Đột biến không phải là cái tự nhiên mà có. Hàng ngày và hàng đêm, Trái Đất luôn đón nhận những tia bức xạ năng lượng cao từ vũ trụ.

Chúng là loại tia không nhìn thấy được, sinh ra từ những vụ nổ siêu tân tinh cách đây hàng triệu năm. Sau những năm dài chu du trong khoảng không vũ trụ, chúng đến Trái Đất, tác động vào ADN của sinh vật sống gây ra những biến đổi ---> đột biến. Những đột biến phù hợp với điều kiện môi trường sẽ tồn tại và phát triển rộng rãi, những đột biến không phù hợp sẽ giết chết sinh vật (ung thư cũng là 1 dạng đột biến).

Chính nhờ cơ chế đột biến ấy mà từ những tế bào đơn giản của mầm sống ban đầu, chúng ta đã có cả một hệ sinh vật phong phú như ngày nay.

Lịch sử của sự sống mỗi giai đoạn được ghi lại bằng cách hóa thạch và các lớp đá. Mình sẽ nêu tóm tắt 1 số giai đoạn ấn tượng nhất.

- Thời kỳ tiền Cambri: Là thời Trái Đất mới hình thành, nguội lạnh đi và các sinh vật sống bắt đầu xuất hiện. Cuối thời kỳ này, có lẽ vì lượng oxi trong không khí quá nhiều khiến nhiệt độ không khí giảm, băng lan dần xuống vùng xích đạo hình thành hiện tượng "quả cầu tuyết" hủy diệt phần lớn sự sống.

- Đại Hiến Sinh: Hoạt động của núi lửa đã thổi cacbon vào không khí phá vỡ hiệu ứng "quả cầu tuyết".

Trong đại này, có những giai đoạn núi lửa hoạt động mạnh làm khí hậu toàn cầu nóng lên, lượng oxi hòa tan trong biển giảm khiến 60% sinh vật biển bị tuyệt chủng. Cũng có những giai đoạn CO2 trong không khí bị đá vôi hấp thụ, lượng CO2 giảm khiến khí hậu toàn cầu lại lạnh đi. Trong Đại Trin Sinh, một vài kỷ có ảnh hưởng lớn đến ngày nay:

+ Kỷ phấn trắng: Thời kỳ này biển ấm và nông, tạo điều kiện cho các sinh vật tích tụ canxi như san hô, sò, ốc....phát triển mạnh. Xác các sinh vật này rất giàu Canxi. Qua nhiều triệu năm, xác của chúng tích tụ thành 1 tầng canxi dày dưới đáy biển, dưới áp lực nước, chúng bị nén lại thành đá. Các hoạt động địa chất nâng các lớp đá này lên và sự bào mòn của mưa axit tạo thành núi. Các đảo đá vôi ở Vịnh Hạ Long và núi đá vôi vùng Tây Bắc là kết quả của quá trình này.

+ Kỷ Cacbon: Thời kì này khí hậu nóng ẩm, diện tích đất liền rộng lớn cho phép những khu rừng nguyên sinh và đầm lầy phát triển mạnh. Thực vật ở thời kỳ này chủ yếu là dương xỷ khổng lồ. Hoạt động nâng lên - chìm xuống của các mảng địa chất đã vùi sâu 1 số khu rừng vào lòng đất. Tại đây, nhiệt độ, áp suất cao và trong điều kiện kín khí, gỗ dần chuyển thành than đá.

Dầu mỏ được hình thành sớm hơn kỷ Cacbon cũng bằng cơ chế tương tự. Xác của các loài động vật bị vùi sâu trong lòng đất và ở nhiệt độ cao, kín khí, các chất hữu cơ bị hóa dầu.​

- Đại Trung Sinh: Các lục địa từ "siêu lục địa" tách ra và có hình dạng gần giống như ngày nay. Trong đại này có thời kỳ của loài khủng long (kỷ Jura).

+ Kỷ Jura: Không chỉ là thời kỳ hoàng kim của khủng long, ở kỷ này, khí hậu nóng ẩm tạo điều kiện cho các loài thực vật và động vật phát triển, đạt kích thước khổng lồ. Loài khủng long đã thống trị Trái Đất trong gần 150 triệu năm (Lịch sử loài người chỉ mới khoảng 200.000 năm). Trong 150 triệu năm ấy, sức mạnh, kích thước, vũ khí tự nhiên (răng, vuốt) được tôn vinh, không có khái niệm về tri thức. Có lẽ vì loài khủng long "lười học hành" mà vũ trụ đã gửi đến cho chúng một sứ giả hủy diệt. Một thiên thạch va vào Trái Đất cách đây 65 triệu năm đã chấm hết thời kì thống trị của khủng long.

- Đại Tân Sinh: Sau sự tuyệt chủng của khủng long, các loài có vú (vốn có mặt từ trước nhưng phải sống lay lắt trong các hang hốc, trốn tránh loài thằn lằn ăn thịt hung dữ) nay đã có cơ hội phát triển. Cuối đại Tân Sinh, sau khi trải qua một kỷ băng hà cách đây 10.000 năm, loài người đã chính thức chiếm lĩnh Trái Đất, đứng đầu trong hệ sinh vật.

Có thể thấy sự sống trên hành tinh phụ thuộc rất lớn vào sự vận động bên trong Trái Đất. Mỗi thời kỳ địa chất - sự phân bố các lục địa - đều có ảnh hưởng to lớn đến hệ sinh vật. Bản thân sinh vật cũng biết tự cải tạo môi trường sống cho mình. Thời mới hình thành, các loài tảo cổ đại đã góp phần tạo một bầu khí quyển giàu oxi tạo mái nhà chung cho các sinh vật khác. Bên cạnh các loài tự dưỡng (thực vật), các loài dị dưỡng (vi khuẩn, động vật, nấm) ra đời nhằm đảm bảo cân bằng lượng O2 và CO2 trong khí quyển, làm khí hậu Trái Đất ổn định. Loài người chúng ta xuất hiện có lẽ mang trên mình trách nhiệm bảo vệ sự sống trên Trái Đất khỏi những mối de dọa từ bên ngoài - điều mà loài khủng long đã không thể làm được.

hương V: Tổng kết.

- Vũ trụ được sinh ra từ một vụ nổ tràn ngập ánh sáng. Trong 1 góc nhỏ nào đó của vũ trụ, hệ Mặt Trời âm thầm hình thành. Vật chất được sinh ra bởi BigBang đang dần có ý thức và đang tìm hiểu về chính mình. Sự sống thực sự là 1 phép màu!

- Vũ trụ là 1 khối rất hỗn độn và ngẫu nhiên. Nó là những vụ nổ lớn, những lò phản ứng nhiệt hạch, những chùm tia bức xạ, những vụ qua chạm của thiên thạch, sao băng, sao chổi....Sự sống đã biết cách tận dụng tối đa những cái ngẫu nhiên mà khốc liệt ấy để tồn tại và phát triển:

+ Dòng năng lượng chảy trong hệ sinh vật được lấy từ năng lượng phản ứng nhiệt hạch của Mặt Trời.
+ Nước trên biển cả được lấy từ những ngôi sao chổi.
+ Dùng những tia bức xạ từ những vụ nổ dữ dội trong vũ trụ để đột biến.
+ Lấy những vụ va chạm thiên thạch làm thử thách, để không ngừng tiến hóa đến những cấp bậc cao hơn.

- 80 năm cuộc đời mỗi người, 200.000 năm lịch sử loài người là quá bé nhỏ so với thời không vũ trụ, quá bé nhỏ để nghĩ đến diệt vong. Sinh rồi diệt, các hành tinh đều không thoát khỏi quy luật ấy, sự sống cũng sẽ như vậy. Tiếng tăm, danh vọng của một con người cho dù vang dội đến đâu rồi cũng sẽ tan biến trong khoảng bao la của thời không.

- Sự tồn tại của mỗi chúng ta đều là ngẫu nhiên và hoàn toàn không có ý nghĩa. Thế giới vốn cũng chẳng có quy luật nào cả.

P/s : Nếu dài các bạn có thể đọc dần từng chương =]]

1

cho mk vô nhóm đi

SỰ SỐNG RA ĐỜI TRONG VŨ TRỤ NHƯ THẾ NÀO ? Quá trình hằng tinh sinh ra bắt đầu từ các đám mây vật chất, dưới lực hấp dẫn tự thân các vật chất này bị ép lại thành một hình chậu, trung tâm của chậu là một hằng tinh bắt đầu sáng, xung quanh nó là các vật chất hình vòng, các hình vòng này phân giải hình thành nên các hành tinh mà sự hình thành hệ Mặt Trời là một ví dụ điển hình....
Đọc tiếp

SỰ SỐNG RA ĐỜI TRONG VŨ TRỤ NHƯ THẾ NÀO ?

Quá trình hằng tinh sinh ra bắt đầu từ các đám mây vật chất, dưới lực hấp dẫn tự thân các vật chất này bị ép lại thành một hình chậu, trung tâm của chậu là một hằng tinh bắt đầu sáng, xung quanh nó là các vật chất hình vòng, các hình vòng này phân giải hình thành nên các hành tinh mà sự hình thành hệ Mặt Trời là một ví dụ điển hình. Trái Đất - hành tinh màu xanh - cũng quay như các hành tinh khác nhưng nó được nước do các sao chổi mang đến và rất có thể chớp điện là chất xúc tác để sinh ra sự sống. Thời kỳ đầu, trong không khí có một lớp cacbonic rất dày, có lượng lưu huỳnh và phôtpho phong phú và đối với tế bào sống thì đây là những nguyên tố cơ bản nhất. Khi các tế bào đó tiến hóa thành các dạng sống cao hơn, thực vật nhả ra một lượng oxy lớn vào bầu không khí và Trái Đất biến thành cái nôi tuyệt vời cho sự sống: nhiệt độ không nóng cũng không lạnh, khoảng cách ngày đêm phù hợp. Nếu đem so sánh với sao Hỏa thì sao Hỏa không có những điều kiện tốt như vậy vì đó là một nơi khô và lạnh lẽo, lạnh đến mức mà ngày ấm nhất nhiệt độ cũng không vượt lên khỏi 0 độ C. Trong suốt gần một nửa thế kỉ, một số nhà thiên văn học đã từng tin rằng trên sao Hỏa có sự sống bởi hình như trên sao Hỏa có các sông đào. Tiếc rằng nước của sông đào đó chưa bao giờ tưới lên được mầm sống nào và thậm chí nếu trên sao Hỏa đã từng có đại dương thì cũng chưa chắc ở đó đã có vi sinh vật. Đại đa số mọi người cho rằng đại dương trên sao Hỏa biến mất là do sao Hỏa quá nhỏ, lực hút yếu nên vật chất không ngừng tản vào không gian làm mất tầng giữ nhiệt. Những gì nhìn thấy được trên sao Hỏa hiện nay chính là dấu tích của thời cổ đại. Vẫn còn nhiều nhà thiên văn học tin rằng phía dưới bề mặt sao Hỏa vẫn còn một lượng nước phong phú dưới dạng băng và biết đâu sẽ có sự tồn tại của vi sinh vật, thậm chí là còn có những hóa thạch nữa.

0
Mới đây, những hình ảnh cuối cùng trước khi “chết” của ngôi sao giống y hệt Mặt Trời đang lụi tàn khiến các nhà khoa học nhận định, đó cũng chính là viễn cảnh sẽ xảy ra đối với Mặt Trời sau khoảng 5 tỷ năm nữa.Những hình ảnh cuối cùng trước khi “chết” của ngôi sao mang tên Pi1 Grus được ghi lại bằng Kính viễn vọng siêu lớn (VTL) của Cơ quan Vũ trị châu Âu (ESA) đặt tại...
Đọc tiếp

Mới đây, những hình ảnh cuối cùng trước khi “chết” của ngôi sao giống y hệt Mặt Trời đang lụi tàn khiến các nhà khoa học nhận định, đó cũng chính là viễn cảnh sẽ xảy ra đối với Mặt Trời sau khoảng 5 tỷ năm nữa.

Những hình ảnh cuối cùng trước khi “chết” của ngôi sao mang tên Pi1 Grus được ghi lại bằng Kính viễn vọng siêu lớn (VTL) của Cơ quan Vũ trị châu Âu (ESA) đặt tại Chile.

Pi1 Grus là ngôi sao nằm ở chòm Grus, cách Trái Đất 530 năm ánh sáng, có khối lượng tương đương Mặt Trời nhưng lớn gấp 350 lần và sáng hơn rất nhiều.

Các nhà thiên văn học giải thích, Pi1 Grus đang “sủi bọt” do hiện tượng khối đối lưu, xảy ra khi có sự chênh lệch mật độ bên trong vật thể lỏng hoặc khí. Mỗi khối này có đường kính khoảng 120 triệu km, gần bằng 1/4 đường kính ngôi sao.

Đầu tiên, Pi1 sẽ co kích thước lại và nóng tới hơn 100 triệu độ C vì phần năng lượng hydro còn lại bị đốt cháy. Nhiệt độ cực kỳ cao sẽ thúc đẩy phản ứng tổng hợp Heli thành những nguyên tử nặng hơn như carbon và oxy.

Phần lõi siêu nóng sẽ đẩy các lớp phía ngoài của ngôi sao ra, phình to lên với kích thước gấp hàng trăm lần ban đầu.

Đây cũng là lần đầu tiên các nhà thiên văn ghi lại được hình ảnh chi tiết về hiệu ứng sủi bọt xảy ra trên một ngôi sao khổng lồ màu đỏ. Nó sẽ tiếp tục phình to cho tới khi “tắt hẳn” và trở thành một tinh vân hành tinh.

Khi không còn ánh sáng từ Mặt Trời và Mặt Trăng thì bản thân vũ trụ sẽ trở thành nguồn sáng duy nhất có thể nhìn thấy được trong không gian.

Năm 2004, nhà toán học Abdul Ahad đã tính toán được rằng dải Ngân Hà phát ra lượng ánh sáng bằng 1/300 lượng ánh sáng của trăng tròn. Do đó chúng ta vẫn sẽ nhìn thấy ánh sáng trong không gian trong một thời gian ngắn.

Ngoài ra, những nguồn năng lượng hóa thạch hay điện lực thì vẫn sẽ tồn tại và vẫn có thể sử dụng được. Các thành phố đô thị vẫn sẽ tiếp tục được phát sáng từ những nguồn sáng nhân tạo như mọi đêm. Chỉ khác mỗi một điều là giờ thì ở đâu cũng là ban đêm hết cả.

Vấn đề quan trọng nhất của sự sống hay của con người trên Trái Đất trong trường hợp này, đó là quang hợp. Khi Mặt Trời không còn tồn tại, quá trình quang hợp sẽ ngay lập tức dừng lại.

99.9% năng suất sản xuất tự nhiên của Trái Đất đều đến từ quá trình quang hợp, một quá trình không thể thiếu yếu tố Mặt Trời. Khi Mặt Trời không tồn tại, cây cối sẽ không thể tích tụ carbon dioxide và thở ra khí oxy để nuôi sống các vật sống.

Do đó, kể cả khi quá trình quang hợp không còn tồn tại, tất cả các sinh vật sống mà cần tiêu thụ khí oxy vẫn sẽ có thể sống được tới hàng nghìn năm.

Tuy nhiên, cây xanh thì không có được sự may mắn đó, bởi đa số cây cối trên Trái Đất sẽ chết trong vòng vài ngày hoặc vài tuần, trừ những cây đại thụ.

Những cây đại thụ có chứa đủ một lượng đường cần thiết để chuyển hóa thành năng lượng sống, giúp cho chúng có thể sống được trong bóng tối trong nhiều năm.

Vấn đề của chúng lại là Trái Đất sẽ sớm trở nên vô cùng lạnh trong một tương lai gần. Nước và nhựa cây bên trong những cây đại thụ này sẽ đông đá, và điều này sẽ giết chết chúng thay vì chết vì đói.

Tại thời điểm này, nhiệt độ bề mặt trung bình trên Trái Đất (tính cả những khu vực nóng và lạnh và các mùa trong năm) rơi vào khoảng 14 - 15 độ C.

Khi không có Mặt Trời để tiếp thêm năng lượng, Trái Đất sẽ tỏa nhiệt theo cấp số nhân, hay nói cách khác là Trái Đất sẽ giảm nhiệt độ rất nhanh trong một thời gian ngắn, và sẽ giảm chậm hơn theo thời gian.

Sau khoảng thời gian 1 tuần sau khi không còn Mặt Trời, nhiệt độ trung bình trên bề mặt Trái Đất sẽ là 0 độ C. Tất nhiên, nhiệt độ như vậy cũng không có gì là quá to tát đối với một số nơi trên Trái Đất, và chúng ta sẽ tạm ổn trong vòng vài tháng.

Nhưng sau khoảng một năm, nhiệt độ trung bình bề mặt Trái Đất sẽ là âm 73 độ C.

Cách tốt nhất để sống sót là con người sẽ phải di cư sang các khu vực địa nhiệt như Iceland hay Yellowstone. Những khu vực này sẽ là những khu vực an toàn duy nhất còn lại cho sự sống con người sau khi Mặt Trời biến mất.

Gần như toàn bộ các sinh vật sống trên Trái Đất phải sống dựa trên năng lượng ngoài Trái Đất - Mặt Trời. Tuy nhiên, bản thân Trái Đất cũng sản xuất ra nhiệt của riêng nó.

Ngay cả khi trôi lơ lửng giữa không gian lạnh lẽo đến hàng tỷ năm, Trái Đất vẫn khá ấm dưới lớp vỏ bề mặt.

20% của lượng nhiệt này được sinh ra khi Trái Đất được hình thành, khi các khối thiên thạch được nghiền chặt vào nhau ở trung tâm, và áp lực này đã biến các khối đá thành chất lỏng hay nói cách khác là tan chảy.

80% còn lại của nhiệt năng ở trung tâm Trái Đất đến từ việc phân rã của các nguyên tố phóng xạ, giúp sản xuất lượng nhiệt năng cần thiết để giữ lõi Trái Đất ở nhiệt độ 5000 độ C.

Từ 1 đến 3 năm sau khi Mặt Trời biến mất, toàn bộ các đại dương trên Trái Đất đều sẽ bị phủ kín bởi băng. Vì tính chất của băng là nhẹ hơn nước, băng sẽ nổi lên trên bề mặt nước, và đồng thời băng cũng là một vật cách nhiệt vô cùng hiệu quả.

Điều này có nghĩa rằng trong vòng hàng tỷ năm sau khi Mặt Trời biến mất, nước lỏng vẫn có thể tồn tại sâu trong lòng đại dương, được bảo vệ và cách nhiệt bởi một lớp băng dày tới hàng dặm ở trên, và giữ ấm bởi những lỗ thông hơi nhiệt ở dưới đáy đại dương.

2
19 tháng 1 2019

hay đó, bn cứ đăng như vậy phụ mk nha

19 tháng 1 2019

từ khi vào nhóm mink biết dc nhiều điều

BẠN BIẾT GÌ VỀ PHI THUYỀN VŨ TRỤ ? Các phi thuyền dương đại bay đến các hành tinh khác đều là các phi thuyền không người lái. Giống như một người máy có trí năng nhất định, phi thuyền là hai mắt của một máy thăm dò. "Người du hành" là hai camera có thể chụp được hàng vạn các bức ảnh về hệ Mặt Trời. Hệ thống chỉ huy của người du hành là ba máy vi tính được nối lại với nhau...
Đọc tiếp

BẠN BIẾT GÌ VỀ PHI THUYỀN VŨ TRỤ ?

Các phi thuyền dương đại bay đến các hành tinh khác đều là các phi thuyền không người lái. Giống như một người máy có trí năng nhất định, phi thuyền là hai mắt của một máy thăm dò. "Người du hành" là hai camera có thể chụp được hàng vạn các bức ảnh về hệ Mặt Trời. Hệ thống chỉ huy của người du hành là ba máy vi tính được nối lại với nhau và liên lạc với Trái Đất thông qua một ăngten hình buồm được mang theo từ Trái Đất. Nếu như một ngày nào đó "Người du hành" bắt gặp một nền văn minh khác nó sẽ phát đi những thông tin mà nó mang đi từ Trái Đất. Bởi "Người du hành'' bay cách xa Mặt Trời nên nó không thể vận động dựa vào năng lượng Mặt Trời, người ta đã lắp cho nó một máy phát điện loại nhỏ và cách biệt hẳn với phi thuyền.

Trong mỗi lần bay mang tính thử nghiệm, rất có thể xảy ra những sự việc ngoài dự đoán cho nên các nhân viên của trung tâm điều khiển luôn ở trong trạng thái căng thẳng. Xung quanh sao Mộc có một tầng các hạt mang điện năng lượng cao vô cùng nguy hiểm lại không nhìn thấy được, do đó nếu phi thuyền tiến sát lại gần các hạt này thì rất có thể bị tổn hại. Phi thuyền cũng rất có thể va chạm vào các khối băng nhỏ trong vòng sáng sao Mộc và nếu va chạm xảy ra thì phi thuyền sẽ hoàn toàn mất điều khiển, chúng ta chẳng có cách nào lấy được những tư liệu mà nó gửi về. Năm 1977, "Người du hành" số 1 và số 2 lần lượt được phóng vào không trung, trải qua bao lo lắng cuối cùng thì hai phi thuyền này đã đến được hệ thống sao Mộc và làm việc hết sức xuất sắc, lần đầu tiên chúng ta đã cung cấp cho con người những cảnh đặc tả về hành tinh này và vệ tinh của nó. Trong bốn vệ tinh của sao Mộc, vệ tinh ở gần sao Mộc nhất được gọi là vệ tinh số 1 sau đó đến vệ tinh số 2 và số 3, ngoài cùng là vệ tinh số 4. Sao Mộc giống như Mặt Trời, có thành phần cấu tạo chủ yếu là hydro và hêli, nếu thể trọng của sao Mộc tăng lên gấp mấy chục lần nữa thì vật chất trong lòng nó sẽ làm xảy ra phản ứng nhiệt hạch và như vậy sao Mộc sẽ biến thành một tinh cầu phát sáng. Rất may là sao Mộc không biến thành hằng tinh, nếu không chúng ta sẽ sống trong hệ thống sao đồng hành, nghĩa là trong không trung có đến hai Mặt Trời, ban đêm Trái Đất sẽ còn rất ngắn. Ở sâu trong lớp mây sao Mộc, trọng lượng lớp khí quyển bên trên sinh ra áp lực lớn, áp lực này lớn hơn bất cứ áp lực nào trên Trái Đất.

Trong trung tâm sao Mộc rất có thể có một khối nham thạch và sắt, nghĩa là có một thế giới giống như Trái Đất dưới áp lực lớn không gì sánh nổi đã chôn vùi vĩnh viễn ở trung tâm của hành tinh lớn nhất này.

0
*Vũ trụ bao gồm tất cả các vật chất và không gian hiện có được coi là một tổng thể. Vũ trụ được cho là có đường kính ít nhất 10 tỷ năm ánh sáng và chứa một số lượng lớn các thiên hà; nó đã được mở rộng kể từ khi thành lập ở Big Bang khoảng 13 tỷ năm trước.[8][9][10][11][12][13] Vũ trụ bao gồm các hành tinh, sao, thiên hà, các thành phần của không gian liên sao, những hạt hạ...
Đọc tiếp

*

Vũ trụ bao gồm tất cả các vật chất và không gian hiện có được coi là một tổng thể. Vũ trụ được cho là có đường kính ít nhất 10 tỷ năm ánh sáng và chứa một số lượng lớn các thiên hà; nó đã được mở rộng kể từ khi thành lập ở Big Bang khoảng 13 tỷ năm trước.[8][9][10][11][12][13] Vũ trụ bao gồm các hành tinh, sao, thiên hà, các thành phần của không gian liên sao, những hạt hạ nguyên tử nhỏ nhất, và mọi vật chất và năng lượng. Vũ trụ quan sát được có đường kính vào khoảng 28 tỷ parsec (91 tỷ năm ánh sáng) trong thời điểm hiện tại.[2] Các nhà thiên văn chưa biết được kích thước toàn thể của Vũ trụ là bao nhiêu và có thể là vô hạn.[14] Những quan sát và phát triển của vật lý lý thuyết đã giúp suy luận ra thành phần và sự tiến triển của Vũ trụ.

Xuyên suốt các thư tịch lịch sử, các thuyết vũ trụ học và tinh nguyên học, bao gồm các mô hình khoa học, đã từng được đề xuất để giải thích những hiện tượng quan sát của Vũ trụ. Các thuyết địa tâm định lượng đầu tiên đã được phát triển bởi các nhà triết học Hy Lạp cổ đại và triết học Ấn Độ.[15][16] Trải qua nhiều thế kỷ, các quan sát thiên văn ngày càng chính xác hơn đã đưa tới thuyết nhật tâm của Nicolaus Copernicus và, dựa trên kết quả thu được từ Tycho Brahe, cải tiến cho thuyết đó về quỹ đạo elip của hành tinh bởi Johannes Kepler, mà cuối cùng được Isaac Newton giải thích bằng lý thuyết hấp dẫn của ông. Những cải tiến quan sát được xa hơn trong Vũ trụ dẫn tới con người nhận ra rằng Hệ Mặt Trời nằm trong một thiên hà chứa hàng tỷ ngôi sao, gọi là Ngân Hà. Sau đó các nhà thiên văn phát hiện ra rằng thiên hà của chúng ta chỉ là một trong số hàng trăm tỷ thiên hà khác. Ở trên những quy mô lớn nhất, sự phân bố các thiên hà được giả định là đồng nhất và như nhau trong mọi hướng, có nghĩa là Vũ trụ không có biên hay một tâm đặc biệt nào đó. Quan sát về sự phân bố và vạch phổ của các thiên hà đưa đến nhiều lý thuyết vật lý vũ trụ học hiện đại. Khám phá trong đầu thế kỷ XX về sự dịch chuyển đỏ trong quang phổ của các thiên hà gợi ý rằng Vũ trụ đang giãn nở, và khám phá ra bức xạ nền vi sóng vũ trụ cho thấy Vũ trụ phải có thời điểm khởi đầu.[17] Gần đây, các quan sát vào cuối thập niên 1990 chỉ ra sự giãn nở của Vũ trụ đang gia tốc[18] cho thấy thành phần năng lượng chủ yếu trong Vũ trụ thuộc về một dạng chưa biết tới gọi là năng lượng tối. Đa phần khối lượng trong Vũ trụ cũng tồn tại dưới một dạng chưa từng biết đến hay là vật chất tối.

Lý thuyết Vụ Nổ Lớn là mô hình vũ trụ học được chấp thuận rộng rãi, nó miêu tả về sự hình thành và tiến hóa của Vũ trụ. Không gian và thời gian được tạo ra trong Vụ Nổ Lớn, và một lượng cố định năng lượng và vật chất choán đầy trong nó; khi không gian giãn nở, mật độ của vật chất và năng lượng giảm. Sau sự giãn nở ban đầu, nhiệt độ Vũ trụ giảm xuống đủ lạnh cho phép hình thành lên những hạt hạ nguyên tử đầu tiên và tiếp sau là những nguyên tử đơn giản. Các đám mây khổng lồ chứa những nguyên tố nguyên thủy này theo thời gian dưới ảnh hưởng của lực hấp dẫn kết tụ lại thành các ngôi sao. Nếu giả sử mô hình phổ biến hiện nay là đúng, thì tuổi của Vũ trụ có giá trị tính được từ những dữ liệu quan sát là 13,799 ± 0,021 tỷ năm.[1].

Có nhiều giả thiết đối nghịch nhau về Số phận sau cùng của Vũ trụ. Các nhà vật lý và triết học vẫn không biết chắc về những gì, nếu bất cứ điều gì, có trước Vụ Nổ Lớn. Nhiều người phản bác những ước đoán, nghi ngờ bất kỳ thông tin nào từ trạng thái trước này có thể thu thập được. Có nhiều giả thuyết về đa vũ trụ, trong đó một vài nhà vũ trụ học đề xuất rằng Vũ trụ có thể là một trong nhiều vũ trụ cùng tồn tại song song với nhau [19][20].

Là một phần trong loạt bài vềVũ trụ học vật lý📷

Vụ Nổ Lớn · Vũ trụ

Độ tuổi vũ trụ

Lịch sử vũ trụ

Vũ trụ ban đầu[hiện]Sự giãn nở · Tương lai[hiện]Thành phần · Cấu trúc[hiện]Thí nghiệm[hiện]Nhà khoa học[hiện]Lịch sử[hiện]

📷 Thể loại

📷 Chủ đề Vũ trụ học

📷 Chủ đề Thiên văn học

📷 Chủ đề Vật lý

x

t

s

Mục lục

1Định nghĩa

2Các tiến trình và Vụ Nổ Lớn

3Tính chất

3.1Hình dạng

3.2Kích thước và các khu vực

3.3Tuổi và sự giãn nở

3.4Không thời gian

4Thành phần

4.1Năng lượng tối

4.2Vật chất tối

4.3Vật chất thường

4.4Hạt sơ cấp

4.4.1Hadron

4.4.2Lepton

4.4.3Photon

5Các mô hình vũ trụ học

5.1Mô hình dựa trên thuyết tương đối tổng quát

6Xem thêm

7Tham khảo

8Đọc thêm

Định nghĩa

Vũ trụ có thể được định nghĩa là mọi thứ đang tồn tại, mọi thứ đã tồn tại, và mọi thứ sẽ tồn tại.[21][22][23] Theo như hiểu biết hiện tại, Vũ trụ chứa các thành phần: không thời gian, các dạng năng lượng (bao gồm bức xạ điện từ và vật chất), và các định luật vật lý liên hệ giữa chúng. Vũ trụ bao hàm mọi dạng sống, mọi lịch sử, và thậm chí một số nhà triết học và khoa học gợi ý rằng nó bao hàm các ý tưởng như toán học và logic.[24][25][26]

Các tiến trình và Vụ Nổ Lớn

Bài chi tiết: Vụ Nổ Lớn và Biên niên của Vũ trụ

Mô hình được chấp thuận rộng rãi về nguồn gốc của Vũ trụ đó là lý thuyết Vụ Nổ Lớn.[27][28] Mô hình Vụ Nổ Lớn miêu tả trạng thái sớm nhất của Vũ trụ có mật độ và nhiệt độ cực kỳ lớn và sau đó trạng thái này giãn nở tại mọi điểm trong không gian. Mô hình dựa trên thuyết tương đối rộng và những giả thiết cơ bản như tính đồng nhất và đẳng hướng của không gian. Phiên bản của mô hình với hằng số vũ trụ học (Lambda) và vật chất tối lạnh, gọi là mô hình Lambda-CDM, là mô hình đơn giản nhất cung cấp cách giải thích hợp lý cho nhiều quan sát khác nhau trong Vũ trụ. Mô hình Vụ Nổ Lớn giải thích cho những quan sát như sự tương quan giữa khoảng cách và dịch chuyển đỏ của các thiên hà, tỉ lệ giữa số lượng nguyên tử hiđrô với nguyên tử heli, và bức xạ nền vi sóng vũ trụ.

Tiến trình của Vũ trụ📷Trong biểu đồ này, thời gian truyền từ trái sang phải, vì vậy tại bất kỳ thời điểm nào, Vũ trụ được biểu diễn bằng một "lát" hình đĩa của biểu đồ.

Trạng thái nóng, đặc ban đầu được gọi là kỷ nguyên Planck, một giai đoạn ngắn kéo dài từ lúc thời gian bằng 0 cho tới một đơn vị thời gian Planck xấp xỉ bằng 10−43 giây. Trong kỷ nguyên Planck, mọi loại vật chất và mọi loại năng lượng đều tập trung trong một trạng thái đặc, nơi lực hấp dẫn được cho là trở lên mạnh ngang với các lực cơ bản khác, và tất cả các lực này có thể đã thống nhất làm một. Từ kỷ nguyên Planck, Vũ trụ đã giãn nở cho tới hình dạng hiện tại, mà có khả năng nó đã trải qua một giai đoạn lạm phát rất ngắn khiến cho kích thước của Vũ trụ đạt tới kích thước lớn hơn nhiều chỉ trong ít hơn 10−32 giây.[29] Giai đoạn này làm đều đặn đi các khối cục vật chất nguyên sơ của Vũ trụ và để lại nó trong trạng thái đồng đều và đẳng hướng như chúng ta quan sát thấy ngày nay. Các thăng giáng cơ học lượng tử trong suốt quá trình này để lại các thăng giáng mật độ trong Vũ trụ, mà sau đó trở thành mầm mống cho sự hình thành các cấu trúc trong Vũ trụ.[30]

Sau kỷ nguyên Planck và lạm phát tới các kỷ nguyên quark, hadron, và lepton. Theo Steven Weinberg, ba kỷ nguyên này kéo dài khoảng 13,82 giây sau thời điểm Vụ Nổ Lớn.[31] Sự xuất hiện của các nguyên tố nhẹ có thể được giải thích bằng lý thuyết dựa trên sự giãn nở của không gian kết hợp với vật lý hạt nhân và vật lý nguyên tử.[32] Khi Vũ trụ giãn nở, mật độ năng lượng của bức xạ điện từ giảm nhanh hơn so với mật độ của vật chất bởi vì năng lượng của một photon giảm theo bước sóng của nó. Cùng với Vũ trụ giãn nở và nhiệt độ giảm đi, các hạt cơ bản kết hợp lại thành những hạt tổ hợp lớn hơn và ổn định hơn. Do vậy, chỉ vài giây sau Vụ Nổ Lớn, hình thành các hạt proton và neutron ổn định và rồi hình thành lên các hạt nhân nguyên tử thông qua các phản ứng hạt nhân.[33][34] Quá trình này, gọi là tổng hợp hạt nhân Vụ Nổ Lớn, dẫn tới sự có mặt hiện nay của các hạt nhân nhẹ, bao gồm hiđrô, deuteri, và heli. Tổng hợp hạt nhân Vụ Nổ Lớn kết thúc sau khoảng 20 phút, khi nhiệt độ Vũ trụ giảm xuống mức không còn đủ để xảy ra các phản ứng tổng hợp hạt nhân nữa.[35] Ở giai đoạn này, vật chất trong Vũ trụ chủ yếu là plasma nóng đặc chứa các electron mang điện tích âm, các hạt neutrino trung hòa và các hạt nhân mang điện tích dương. Các hạt và phản hạt liên tục va chạm và hủy thành cặp photon và ngược lại. Kỷ nguyên này được gọi là kỷ nguyên photon, kéo dài trong khoảng 380 nghìn năm.[36]

Với photon không còn tương tác với vật chất nữa, Vũ trụ bước vào giai đoạn vật chất chiếm đa số về mật độ (matter-dominated era; lưu ý là giai đoạn này sau khoảng 47 nghìn năm kể từ Vụ Nổ Lớn,[37] bởi Vũ trụ vẫn như màn sương mờ đục-optical thick-đối với bức xạ. Trước giai đoạn này là bức xạ chiếm đa số và động lực của Vũ trụ bị chi phối bởi bức xạ.). Đến thời điểm của kỷ nguyên tái kết hợp - sau khoảng 380 nghìn năm, electron và các hạt nhân hình thành lên các nguyên tử ổn định, cho phép Vũ trụ trở lên trong suốt với sóng điện từ. Lúc này ánh sáng có thể lan truyền tự do trong không gian, và nó vẫn còn được quan sát cho tới tận ngày nay với tên gọi bức xạ nền vi sóng vũ trụ (CMB). Sau khoảng 100 đến 300 triệu năm, những ngôi sao đầu tiên bắt đầu hình thành; đây là những ngôi sao rất lớn, sáng và chịu trách nhiệm cho quá trình tái ion hóa của Vũ trụ. Bởi không có các nguyên tố nặng hơn liti từ giai đoạn tổng hợp hạt nhân Vụ Nổ Lớn, những ngôi sao này đã tạo ra các nguyên tố nặng đầu tiên bởi quá trình tổng hợp hạt nhân sao.[38] Vũ trụ cũng chứa một dạng năng lượng bí ẩn gọi là năng lượng tối; mật độ năng lượng của năng lượng tối không thay đổi theo thời gian. Sau khoảng 9,8 tỷ năm, Vũ trụ đã giãn nở đến mức độ khiến cho mật độ của vật chất nhỏ hơn mật độ của năng lượng tối, đánh dấu bắt đầu của giai đoạn năng lượng tối thống lĩnh Vũ trụ (dark-energy-dominated era).[39] Trong giai đoạn này, sự giãn nở gia tăng của Vũ trụ là do năng lượng tối.

Tính chất

Bài chi tiết: Vũ trụ quan sát được, Tuổi của Vũ trụ, và Giãn nở metric của không gian

Không thời gian của Vũ trụ thường được thể hiện từ khuôn khổ của không gian Euclid, khi coi không gian có ba chiều vật lý, và thời gian là một chiều khác, trở thành "chiều thứ tư".[40] Bằng cách kết hợp không gian và thời gian thành một thực thể đa tạp toán học duy nhất gọi là không gian Minkowski, các nhà vật lý đã đưa ra nhiều lý thuyết vật lý miêu tả các hiện tượng trong Vũ trụ theo một cách thống nhất hơn từ phạm vi siêu thiên hà cho tới mức hạ nguyên tử.

Các sự kiện trong không thời gian không được xác định tuyệt đối từ khoảng không gian và khoảng thời gian mà có quan hệ tương đối với chuyển động của một quan sát viên. Không gian Minkowski miêu tả gần đúng Vũ trụ khi không có lực hấp dẫn; đa tạp tựa-Riemann của thuyết tương đối rộng miêu tả Vũ trụ chính xác hơn khi đưa trường hấp dẫn và vật chất vào không thời gian bốn chiều. Lý thuyết dây giả thiết có tồn tại những chiều ngoại lai khác của không thời gian.

Trong bốn tương tác cơ bản, lực hấp dẫn thống trị Vũ trụ trên phạm vi kích thước lớn, bao gồm thiên hà và các cấu trúc lớn hơn. Các hiệu ứng hấp dẫn có tính tích lũy; ngược lại, trong khi đó các hiệu ứng của điện tích âm và điện tích dương có xu hướng hủy lẫn nhau, khiến cho lực điện từ không có ảnh hưởng nhiều trên quy mô lớn của Vũ trụ. Hai tương tác còn lại, tương tác yếu và tương tác mạnh, giảm cường độ tác dụng rất nhanh theo khoảng cách và các hiệu ứng của chúng chủ yếu đáng kể trên phạm vi hạ nguyên tử.

Vũ trụ chứa vật chất nhiều hơn phản vật chất, một sự chênh lệch có khả năng liên quan tới sự vi phạm CP trong tương tác yếu.[41] Dường như Vũ trụ cũng không có động lượnghay mômen động lượng. Sự vắng mặt của điện tích hay động lượng trên tổng thể có thể xuất phát từ các định luật vật lý được đa số các nhà khoa học công nhận (tương ứng định luật Gauss và tính không phân kỳ của giả tenxơ ứng suất-năng lượng-động lượng) nếu Vũ trụ có biên giới hạn.[42]

Các cấp độ khoảng cách trong Vũ trụ quan sát được📷Vị trí của Trái Đất trong Vũ trụ.

Hình dạng

📷Ba hình dạng có thể của vũ trụ.Bài chi tiết: Hình dạng của Vũ trụ

Thuyết tương đối tổng quát miêu tả không thời gian bị cong như thế nào do ảnh hưởng của vật chất và năng lượng. Tô pô hay hình họccủa Vũ trụ bao gồm cả hình học cục bộ trong vũ trụ quan sát được và hình học toàn cục. Các nhà vũ trụ học thường nghiên cứu trên một nhát cắt kiểu không gian nhất định của không thời gian gọi là các tọa độ đồng chuyển động. Phần không thời gian có thể quan sát được là phần nhìn ngược về nón ánh sáng mà phân định ra chân trời vũ trụ học. Chân trời vũ trụ học (cũng gọi là chân trời hạt hoặc chân trời ánh sáng) là khoảng cách đo được mà từ đó có thể khôi phục được thông tin[43] hay khoảng cách lớn nhất mà hạt có thể đạt được để tới quan sát viên trong phạm vi tuổi của Vũ trụ. Chân trời này là ranh giới biên giữa những vùng quan sát được và không quan sát được của Vũ trụ.[44][45] Sự tồn tại, tính chất và ý nghĩa của chân trời Vũ trụ học phụ thuộc vào từng mô hình vũ trụ học cụ thể.

Một tham số quan trọng xác định lên tương lai tiến hóa của Vũ trụ đó là tham số mật độ, Omega (Ω), định nghĩa bằng mật độ vật chất trung bình của Vũ trụ chia cho một giá trị giới hạn của mật độ này. Việc có một trong ba khả năng của hình dạng Vũ trụ phụ thuộc vào Ω có bằng, nhỏ hơn hay lớn hơn 1. Tương ứng với các giá trị này là Vũ trụ phẳng, mở hay Vũ trụ đóng.[46]

Các quan sát, bao gồm từ các tàu Cosmic Background Explorer (COBE), Tàu thăm dò Bất đẳng hướng Vi sóng Wilkinson (WMAP), và Planck vẽ bản đồ CMB, cho thấy Vũ trụ mở rộng vô hạn với tuổi hữu hạn như được miêu tả bởi mô hình Friedmann–Lemaître–Robertson–Walker (FLRW).[47][48][49][50] Mô hình FLRW cũng ủng hộ các mô hình vũ trụ lạm phát và mô hình chuẩn của vũ trụ học, miêu tả vũ trụ phẳng và đồng nhất với sự chiếm lĩnh chủ yếu của vật chất tối và năng lượng tối.[51][52]

Tô pô toàn cục của Vũ trụ rất khó xác định và người ta chưa biết chính xác tính chất này của Vũ trụ. Từ các dữ liệu quan trắc CMB của tàu Planck, một số nhà vật lý cho rằng tô pô của vũ trụ là mở, lớn vô hạn có biên hoặc không có biên.[53][54]

Kích thước và các khu vực

Xem thêm: Vũ trụ quan sát được và Vũ trụ học quan sát

Xác định kích thước chính xác của Vũ trụ là một vấn đề khó khăn. Theo như định nghĩa có tính giới hạn, Vũ trụ là những thứ trong phạm vi không thời gian mà có thể có cơ hội tương tác với chúng ta và ngược lại.[55] Theo thuyết tương đối tổng quát, một số khu vực của không gian sẽ không bao giờ tương tác được với chúng ta ngay cả trong thời gian tồn tại của Vũ trụ bởi vì tốc độ ánh sáng là giới hạn và sự giãn nở của không gian. Ví dụ, thông điệp vô tuyến gửi từ Trái Đất có thể không tới được một số khu vực của không gian, ngay cả nếu như Vũ trụ tồn tại mãi mãi: do không gian có thể giãn nở nhanh hơn ánh sáng truyền bên trong nó.[56]

Các vùng không gian ở xa được cho là tồn tại và là một phần thực tại như chúng ta, cho dù chúng ta không bao giờ chạm tới được chúng. Vùng không gian mà chúng ta có thể thu nhận được thông tin gọi là Vũ trụ quan sát được. Nó phụ thuộc vào vị trí của người quan sát. Bằng cách di chuyển, một quan sát viên có thể liên lạc được với một vùng không thời gian lớn hơn so với quan sát viên đứng yên. Tuy vậy, ngay cả đối với quan sát viên di chuyển nhanh nhất cũng không thể tương tác được với toàn bộ không gian. Nói chung, Vũ trụ quan sát được lấy theo nghĩa của phần không gian Vũ trụ được quan sát từ điểm thuận lợi của chúng ta từ Ngân Hà.

Khoảng cách riêng—khoảng cách được đo tại một thời điểm cụ thể, bao gồm vị trí hiện tại từ Trái Đất cho tới biên giới của Vũ trụ quan sát được là bằng 46 tỷ năm ánh sáng (14 tỷ parsec), do đó đường kính của Vũ trụ quan sát được vào khoảng 91 tỷ năm ánh sáng (28×109 pc). Khoảng cách ánh sáng từ biên của Vũ trụ quan sát được là xấp xỉ bằng tuổi của Vũ trụ nhân với tốc độ ánh sáng, 13,8 tỷ năm ánh sáng (4,2×109 pc), nhưng khoảng cách này không biểu diễn cho một thời điểm bất kỳ khác, bởi vì biên giới của Vũ trụ và Trái Đất đang di chuyển dần ra xa khỏi nhau.[57] Để so sánh, đường kính của một thiên hà điển hình gần bằng 30.000 năm ánh sáng, và khoảng cách điển hình giữa hai thiên hà lân cận nhau là khoảng 3 triệu năm ánh sáng.[58] Ví dụ, đường kính của Ngân Hà vào khoảng 100.000 năm ánh sáng,[59] và thiên hà lớn gần nhất với Ngân Hà, thiên hà Andromeda, nằm cách xa khoảng 2,5 triệu năm ánh sáng.[60] Bởi vì chúng ta không thể quan sát không gian vượt ngoài biên giới của Vũ trụ quan sát được, chúng ta không thể biết được kích thước của Vũ trụ là hữu hạn hay vô hạn.[14][61][62]

Tuổi và sự giãn nở

Bài chi tiết: Tuổi của Vũ trụ và Giãn nở metric của không gian

Các nhà thiên văn tính toán tuổi của Vũ trụ bằng giả thiết rằng mô hình Lambda-CDM miêu tả chính xác sự tiến hóa của Vũ trụ từ một trạng thái nguyên thủy rất nóng, đậm đặc và đồng nhất cho tới trạng thái hiện tại và họ thực hiện đo các tham số vũ trụ học mà cấu thành lên mô hình này. Mô hình này được hiểu khá tốt về mặt lý thuyết và được ủng hộ bởi những quan trắc thiên văn với độ chính xác cao gần đây như từ các tàu WMAP và Planck. Các kết quả này thường khớp với các quan trắc từ các dự án khảo sát sự bất đẳng hướng trong bức xạ vi sóng vũ trụ, mối liên hệ giữa dịch chuyển đỏ và độ sáng từ các vụ nổ siêu tân tinh loại Ia, và khảo sát các cụm thiên hà trên phạm vi lớn bao gồm đặc điểm dao động baryon tựa âm thanh (baryon acoustic oscillation). Những quan sát khác, như nghiên cứu hằng số Hubble, sự phân bố các cụm thiên hà, hiện tượng thấu kính hấp dẫn yếu và tuổi của các cụm sao cầu, đều cho dữ liệu nhất quán với nhau, từ đó mang lại phép thử chéo cho mô hình chuẩn của Vũ trụ học ở giai đoạn trẻ của vũ trụ nhưng bớt chính xác hơn đối với những đo đạc trong phạm vi gần Ngân Hà. Với sự ưu tiên về mô hình Lambda-CDM là đúng, sử dụng nhiều kỹ thuật đo cho những tham số này cho phép thu được giá trị xấp xỉ tốt nhất về tuổi của Vũ trụ vào khoảng 13,799 ± 0,021 tỷ năm (tính đến năm 2015).[1]

Theo thời gian Vũ trụ và các thành phần trong nó tiến hóa, ví dụ số lượng và sự phân bố của các chuẩn tinh và các thiên hà đều thay đổi[63] và chính không gian cũng giãn nở. Vì sự giãn nở này, các nhà khoa học có thể ghi lại được ánh sáng từ một thiên hà nằm cách xa Trái Đất 30 tỷ năm ánh sáng cho dù ánh sáng mới chỉ đi được khoảng thời gian khoảng 13 tỷ năm; lý do không gian giữa chúng đã mở rộng ra. Sự giãn nở này phù hợp với quan sát rằng ánh sáng từ những thiên hà ở xa khi tới được thiết bị đo thì đã bị dịch chuyển sáng phía đỏ; các photon phát ra từ chúng đã mất dần năng lượng và chuyển dịch sang bước sóng dài hơn (hay tần số thấp hơn) trong suốt quãng đường hành trình của chúng. Phân tích phổ từ các siêu tân tinh loại Ia cho thấy sự giãn nở không gian là đang gia tốc tăng.[64][65]

Càng nhiều vật chất trong Vũ trụ, lực hút hấp dẫn giữa chúng càng mạnh. Nếu Vũ trụ quá đậm đặc thì nó sẽ sớm co lại thành một kỳ dị hấp dẫn. Tuy nhiên, nếu Vũ trụ chứa quá ít vật chất thì sự giãn nở sẽ gia tốc quá nhanh không đủ thời gian để các hành tinh và hệ hành tinh hình thành. Sau Vụ Nổ Lớn, Vũ trụ giãn nở một cách đơn điệu. Thật ngạc nhiên là, Vũ trụ của chúng ta có mật độ khối lượng vừa đúng vào cỡ khoảng 5 proton trên một mét khối cho phép sự giãn nở của không gian kéo dài trong suốt 13,8 tỷ năm qua, một quãng thời gian đủ để hình thành lên vũ trụ quan sát được như ngày nay.[66]

Có những lực mang tính động lực tác động lên các hạt trong Vũ trụ mà ảnh hưởng tới tốc độ giãn nở. Trước năm 1998, đa số các nhà vũ trụ học cho rằng sự tăng giá trị của hằng số Hubble sẽ tiến tới giảm dần theo thời gian do sự ảnh hưởng của tương tác hấp dẫn, do vậy họ đưa ra một đại lượng đo được trong Vũ trụ đó là tham số giảm tốc mà họ hi vọng nó có liên hệ trực tiếp tới mật độ vật chất của Vũ trụ. Vào năm 1998, hai nhóm các nhà thiên văn độc lập với nhau đã đo được tham số giảm tốc có giá trị xấp xỉ bằng −1 nhưng khác 0, hàm ý rằng tốc độ giãn nở ngày nay của Vũ trụ là gia tăng theo thời gian.[18][67]

Không thời gian

Bài chi tiết: Không thời gian và Tuyến thế giớiXem thêm: Phép biến đổi Lorentz

Không thời gian là bối cảnh cho mọi sự kiện vật lý xảy ra—một sự kiện là một điểm trong không thời gian xác định bởi các tọa độ không gian và thời gian. Các yếu tố cơ bản của không thời gian là các sự kiện. Trong một không thời gian bất kỳ, sự kiện được xác định một cách duy nhất bởi vị trí và thời gian. Bởi vì các sự kiện là các điểm không thời gian, trong vật lý tương đối tính cổ điển, vị trí của một hạt cơ bản (giống như hạt điểm) tại một thời điểm cụ thể có thể được viết bằng {\displaystyle (x,y,z,t)}📷. Có thể định nghĩa không thời gian là hợp của mọi sự kiện giống như cách một đường thẳng là hợp của mọi điểm trên nó, mà theo phát biểu toán học gọi là đa tạp.[68]

Vũ trụ dường như là một continum không thời gian chứa ba chiều không gian một chiều thời khoảng (thời gian). Trên trung bình, Vũ trụ có tính chất hình học gần phẳng (hay độ cong không gian xấp xỉ bằng 0), có nghĩa là hình học Euclid là mô hình xấp xỉ tốt về hình học của Vũ trụ trên khoảng cách lớn của nó.[69] Ở cấu trúc toàn cục, tô pô của không thời gian có thể là không gian đơn liên (simply connected space), tương tự như với một mặt cầu, ít nhất trên phạm vi Vũ trụ quan sát được. Tuy nhiên, các quan sát hiện tại không thể ngoại trừ một số khả năng rằng Vũ trụ có thêm nhiều chiều ẩn giấu và không thời gian của Vũ trụ có thể là không gian tô pô đa liên toàn cục (multiply connected global topology), tương tự như tô pô của không gian hai chiều đối với mặt của hình trụ hoặc hình vòng xuyến.[48][70][71][72]

Thành phần

📷Mô phỏng sự hình thành của các đám và sợi thiên hà trên quy mô lớn theo mô hình Vật chất tối lạnh kết hợp với năng lượng tối. Khung hình chỉ ra tiến hóa của cấu trúc này trong hộp thể tích 43 triệu parsec (hay 140 triệu năm ánh sáng) từ dịch chuyển đỏ bằng 30 cho tới kỷ nguyên hiện tại (hộp trên cùng bên trái z=30 tới hộp dưới cùng bên phải z=0).Xem thêm: Sự hình thành và tiến hóa thiên hà, Quần tụ thiên hà, Dự án Illustris, và Tinh vân

Vũ trụ chứa phần lớn các thành phần năng lượng tối, vật chất tối, và vật chất thông thường. Các thành phần khác là bức xạ điện từ(ước tính chiếm từ 0,005% đến gần 0,01%) và phản vật chất.[73][74][75] Tổng lượng bức xạ điện từ sản sinh ra trong Vũ trụ đã giảm đi một nửa trong 2 tỷ năm qua.[76][77]

Tỷ lệ phần trăm của mọi loại vật chất và năng lượng thay đổi trong suốt lịch sử của Vũ trụ.[78] Ngày nay, vật chất thông thường, bao gồm nguyên tử, sao, thiên hà, môi trường không gian liên sao, và sự sống, chỉ chiếm khoảng 4,9% thành phần của Vũ trụ.[6] Mật độtổng hiện tại của loại vật chất thông thường là rất thấp, chỉ khoảng 4,5 × 10−31 gram trên một centimét khối, tương ứng với mật độ của một proton trong thể tích bốn mét khối.[4] Các nhà khoa học vẫn chưa biết được bản chất của cả năng lượng tối và vật chất tối. Vật chất tối, một dạng vật chất bí ẩn mà các nhà vật lý vẫn chưa nhận ra dạng của nó, chiếm thành phần khoảng 26,8%. Năng lượng tối, có thể coi là năng lượng của chân không và là nguyên nhân gây ra sự giãn nở gia tốc của Vũ trụ trong lịch sử gần đây của nó, thành phần còn lại chiếm khoảng 68,3%.[6][79][80]

📷Bản đồ vẽ các siêu đám thiên hà và khoảng trống gần Trái Đất nhất.

Vật chất, vật chất tối, năng lượng tối phân bố đồng đều trong toàn thể Vũ trụ khi xét phạm vi khoảng cách trên 300 triệu năm ánh sáng.[81] Tuy nhiên, trên những phạm vi nhỏ hơn, vật chất có xu hướng tập trung lại thành cụm; nhiều nguyên tử tích tụ thành các ngôi sao, các ngôi sao tập trung trong thiên hà và phần lớn các thiên hà quần tụ lại thành các đám, siêu đám và cuối cùng là những sợi thiên hà (galaxy filament) trên những khoảng cách lớn nhất. Vũ trụ quan sát được chứa xấp xỉ 3×10 23 ngôi sao[82] và hơn 100 tỷ (1011) thiên hà.[83] Các thiên hà điển hình xếp từ loại thiên hà lùn với vài chục triệu [84] (107) sao cho tới những thiên hà chứa khoảng một nghìn tỷ (1012)[85] sao. Giữa những cấu trúc này là các khoảng trống (void) lớn, với đường kính vào cỡ 10–150 Mpc (33 triệu–490 triệu ly). Ngân Hà nằm trong Nhóm Địa Phương, rồi đến lượt nó thuộc về siêu đám Laniakea.[86] Siêu đám này trải rộng trên 500 triệu năm ánh sáng, trong khi Nhóm Địa Phương có đường kính xấp xỉ 10 triệu năm ánh sáng.[87] Vũ trụ cũng có những vùng trống hoang vu tương đối lớn; khoảng trống lớn nhất từng đo được có đường kính vào khoảng 1,8 tỷ ly (550 Mpc).[88]

📷Tỷ lệ phần trăm các thành phần của Vũ trụ ngày nay so với thời điểm 380.000 năm sau Vụ Nổ Lớn, dữ liệu thu thập trong 5 năm từ tàu WMAP (tính đến 2008).[89] (Do làm tròn, tổng các tỷ lệ này không chính xác bằng 100%). Điều này phản ánh giới hạn của WMAP khi xác định vật chất tối và năng lượng tối.

Trên quy mô lớn hơn các siêu đám thiên hà, Vũ trụ quan sát được là đẳng hướng, có nghĩa rằng những dữ liệu mang tính chất thống kê của Vũ trụ có giá trị như nhau trong mọi hướng khi quan sát từ Trái Đất. Vũ trụ chứa đầy bức xạ vi sóng có độ đồng đều cao mà nó tương ứng với phổ bức xạ vật đen trong trạng thái cân bằng nhiệt động ở nhiệt độ gần 2,72548 kelvin.[5] Tiên đề coi Vũ trụ là đồng đều và đẳng hướng trên phạm vi khoảng cách lớn được gọi là nguyên lý vũ trụ học.[90] Nếu vật chất và năng lượng trong Vũ trụ phân bố đồng đều và đẳng hướng thì sẽ nhìn thấy mọi thứ như nhau khi quan sát từ mọi điểm[91] và Vũ trụ không có một tâm đặc biệt nào.[92]

Năng lượng tối

Bài chi tiết: Năng lượng tối

Tại sao sự giãn nở của Vũ trụ lại tăng tốc vẫn là một câu hỏi hóc búa đối với các nhà vũ trụ học. Người ta thường cho rằng "năng lượng tối", một dạng năng lượng bí ẩn với giả thuyết mật độ không đổi và có mặt khắp nơi trong Vũ trụ là nguyên nhân của sự giãn nở này.[93]Theo nguyên lý tương đương khối lượng-năng lượng, trong phạm vi cỡ thiên hà, mật độ của năng lượng tối (~ 7 × 10−30 g/cm3) nhỏ hơn rất nhiều so với mật độ của vật chất thông thường hay của năng lượng tối chứa trong thể tích của một thiên hà điển hình. Tuy nhiên, trong thời kỳ năng lượng tối thống trị hiện nay, nó lấn át thành phần khối lượng-năng lượng của Vũ trụ bởi vì sự phân bố đồng đều của nó ở khắp nơi trong không gian.[94][95]

Các nhà khoa học đã đề xuất hai dạng mà năng lượng tối có thể gán cho đó là hằng số vũ trụ học, một mật độ năng lượng không đổi choán đầy không gian vũ trụ,[96] và các trường vô hướng như nguyên tố thứ năm (quintessence) hoặc trường moduli, các đại lượng động lực mà mật độ năng lượng có thể thay đổi theo không gian và thời gian. Các đóng góp từ những trường vô hướng mà không đổi trong không gian cũng thường được bao gồm trong hằng số vũ trụ học. Ngoài ra, biến đổi nhỏ ở giá trị trường vô hướng bởi sự phân bố bất đồng nhất theo không gian khiến cho rất khó có thể phân biệt những trường này với mô hình hằng số vũ trụ. Vật lý lượng tử cũng gợi ý hằng số này có thể có nguồn gốc từ năng lượng chân không (ví dụ sự xuất hiện của hiệu ứng Casimir). Tuy vậy giá trị đo được của mật độ năng lượng tối lại nhỏ hơn 120 lần bậc độ lớn so với giá trị tính toán của lý thuyết trường lượng tử.

Vật chất tối

Bài chi tiết: Vật chất tối

Vật chất tối là loại vật chất giả thiết không thể quan sát được trong phổ điện từ, nhưng theo tính toán nó phải chiếm phần lớn vật chất trong Vũ trụ. Sự tồn tại và tính chất của vật chất tối được suy luận từ ảnh hưởng hấp dẫn của nó lên vật chất baryon, bức xạ và các cấu trúc lớn trong Vũ trụ. Ngoài neutrino, một loại được các nhà thiên văn vật lý xếp vào dạng vật chất tối nóng - có thể phát hiện thông qua các máy dò đặt dưới lòng đất, thì cho tới nay chưa thể phát hiện tác động trực tiếp của vật chất tối lên các thiết bị thí nghiệm, khiến cho nó trở thành một trong những bí ẩn lớn nhất của ngành thiên văn vật lý hiện đại. Vật chất tối không phát ra hay hấp thụ ánh sáng hay bất kỳ bức xạ điện từnào ở mức đáng kể. Theo kết quả quan trắc từ bức xạ nền vi sóng vũ trụ, vật chất tối chiếm khoảng 26,8% tổng thành phần năng lượng-vật chất và 84,5% tổng thành phần vật chất trong Vũ trụ quan sát được.[79][97]

Vật chất thường

Bài chi tiết: Vật chất📷Ảnh chụp của Hubble về cụm sao trẻ Westerlund 2 và môi trường xung quanh nó.

Thành phần khối lượng-năng lượng chiếm 4,9% còn lại của Vũ trụ là "vật chất thông thường", tức là bao gồm các loại nguyên tử, ion, electron và các vật thể mà chúng cấu thành lên. Chúng bao gồm các sao, loại thiên thể tạo ra phần lớn ánh sáng phát ra từ các thiên hà, cũng như khí và bụi trong môi trường liên sao (vd. các tinh vân) và liên thiên hà, các hành tinh, và mọi vật thể có mặt trong cuộc sống hàng ngày mà chúng ta có thể cầm nắm, sản xuất, nghiên cứu và phát hiện ra.[98] Vật chất thông thường tồn tại trong bốn trạng thái (hay pha): thể rắn, lỏng, khí, và plasma. Tuy nhiên, những tiến bộ trong kỹ thuật thực nghiệm đã cho phép hiện thực hóa được những trạng thái mới của vật chất mà trước đó chỉ được tiên toán tồn tại trên lý thuyết, đó là ngưng tụ Bose–Einstein và ngưng tụ fermion.

Vật chất bình thường cấu thành từ hai loại hạt cơ bản: quark và lepton.[99] Ví dụ, hạt proton hình thành từ hai hạt quark lên và một hạt quark xuống; hạt neutron hình thành từ hai hạt quark xuống và một hạt quark lên; và electron là một loại thuộc họ lepton. Một nguyên tử chứa một hạt nhân nguyên tử, mà do các proton và neutron liên kết với nhau, và các electron trên obitan nguyên tử. Bởi vì phần lớn khối lượng của nguyên tử tập trung tại hạt nhân của nó, mà cấu thành từ các hạt baryon, các nhà thiên văn học thường sử dụng thuật ngữ vật chất baryon để miêu tả vật chất thông thường, mặc dù một phần nhỏ của loại "vật chất baryon" này là các electron và neutrino.

Ngay sau vụ nổ Big Bang, các proton và neutron nguyên thủy hình thành từ dạng plasma quark–gluon của giai đoạn sơ khai khi Vũ trụ "nguội" đi dưới hai nghìn tỷ độ. Một vài phút sau, trong quá trình tổng hợp hạt nhân Big Bang, các hạt nhân hình thành nhờ sự kết hợp của các hạt proton và neutron nguyên thủy. Quá trình tổng hợp này tạo ra các nguyên tố nhẹ như liti và beryllium, trong khi các nguyên tố nặng hơn chúng lại được sản sinh từ quá trình khác. Một số nguyên tử boron có thể hình thành vào giai đoạn này, nhưng đối với nguyên tố nặng hơn kế tiếp, carbon, đã không hình thành ra một lượng đáng kể. Tổng hợp hạt nhân Vụ Nổ Lớn kết thúc sau khoảng 20 phút do sự giảm nhanh chóng của nhiệt độ và mật độ bởi sự giãn nở của Vũ trụ. Sự hình thành các nguyên tố nặng hơn là do kết quả của các quá trình tổng hợp hạt nhân saovà tổng hợp hạt nhân siêu tân tinh.[100]

Một số cấu trúc trong Vũ trụ📷Tinh vân Đầu Ngựa trong chòm sao Orion.📷Cụm thiên hà Abell 1689 với hiệu ứng thấu kính hấp dẫn📷Ngân Hà trên bầu trời Paranal với kính thiên văn VLT.

Hạt sơ cấp

📷Mô hình chuẩn của các hạt sơ cấp: 12 fermion cơ bản và 4 boson cơ bản. Các boson chuẩn (màu đỏ) bắt cặp với các fermion (màu tím và xanh), phóng to hình vẽ để thấy. Các cột là ba thế hệ vật chất (những fermion) và những hạt trường của tương tác (boson). Trong ba cột đầu tiên, hai hàng trên là các hạt quarks và hai hàng dưới là các lepton. Hai hàng trên lần lượt là quark lên (u) và quark xuống (d), quark duyên (c) và quark lạ (s), quark đỉnh (t) và quark đáy (b), và photon (γ) và gluon (g), ngoài cùng là boson Higgs. Hai hàng dưới chứa lần lượt neutrino electron (νe) và electron (e), neutrino muon (νμ) và muon (μ), neutrino tau (ντ) và tau (τ), và các boson mang lực hạt nhân yếu Z0 và W±. Khối lượng, điện tích, và spin được viết ra cho mỗi loại hạt.Bài chi tiết: Vật lý hạt

Vật chất thông thường và các lực tác dụng lên vật chất được miêu tả theo tính chất và hoạt động của các hạt sơ cấp.[101] Các hạt này đôi khi được miêu tả là cơ bản, bởi vì dường như chúng không có cấu trúc bên trong, và người ta chưa biết liệu chúng có phải là hạt tổ hợp của những hạt nhỏ hơn hay không.[102][103] Lý thuyết quan trọng trung tâm miêu tả các hạt sơ cấp là Mô hình Chuẩn, lý thuyết đề cập đến các tương tác điện từ, tương tác yếu và tương tác mạnh.[104] Mô hình Chuẩn đã được kiểm chứng và xác nhận bằng thực nghiệm liên quan tới sự tồn tại của các hạt cấu thành lên vật chất: các hạt quark và lepton, và những "phản hạt" đối ngẫu với chúng, cũng như các hạt chịu trách nhiệm truyền tương tác: photon, và boson W và Z , và gluon.[102] Mô hình Chuẩn cũng tiên đoán sự tồn tại của loại hạt gần đây mới được xác nhận tồn tại đó là boson Higgs, loại hạt đặc trưng cho một trường trong Vũ trụ mà chịu trách nhiệm cho khối lượng của các hạt sơ cấp.[105][106] Bởi vì nó đã thành công trong giải thích rất nhiều kết quả thí nghiệm, Mô hình Chuẩn đôi lúc được coi là "lý thuyết của mọi thứ".[104] Tuy nhiên, Mô hình Chuẩn không miêu tả lực hấp dẫn. Một lý thuyết thực thụ "cho tất cả" vẫn còn là mục tiêu xa của ngành vật lý lý thuyết.[107]

Hadron

Bài chi tiết: Hadron

Hadron là những hạt tổ hợp chứa các quark liên kết với nhau bởi lực hạt nhân mạnh. Hadron được phân thành hai họ: baryon(như proton và neutron) được cấu thành từ ba hạt quark, và meson (như hạt pion) được cấu thành từ một quark và một phản quark. Trong các hadron, proton là loại hạt ổn định với thời gian sống rất lâu, và neutron khi liên kết trong hạt nhân nguyên tử cũng là loại ổn định. Các hadron khác rất không bền dưới các điều kiện bình thường và do vậy chúng là những thành phần không đáng kể trong Vũ trụ. Từ xấp xỉ 10−6 giây sau vụ nổ Big Bang, trong giai đoạn gọi là kỷ nguyên hadron, nhiệt độ của Vũ trụ đã giảm đáng kể cho phép các hạt quark liên kết với các gluon để tạo thành hadron, và khối lượng của Vũ trụ giai đoạn này chủ yếu đóng góp từ các hadron. Nhiệt độ lúc đầu đủ cao để cho phép hình thành các cặp hadron/phản-hadron, mà giữ cho vật chất và phản vật chất trong trạng thái cân bằng nhiệt động. Tuy nhiên, khi nhiệt độ Vũ trụ tiếp tục giảm, các cặp hadron/phản-hadron không còn tồn tại nữa. Đa số các hadron và phản-hadron hủy lẫn nhau trong phản ứng hủy cặp hạt-phản hạt, chỉ để lại một lượng nhỏ hadron tại lúc Vũ trụ mới trải qua quãng thời gian một giây.[108]: 244–266

Lepton

Bài chi tiết: Lepton

Lepton là loại hạt sơ cấp có spin bán nguyên không tham gia vào tương tác mạnh nhưng nó tuân theo nguyên lý loại trừ Pauli; không có hai lepton cùng một thế hệ nào có thể ở cùng một trạng thái tại cùng một thời gian.[109] Có hai lớp lepton: các lepton mang điện tích (còn được biết đến lepton giống electron), và các lepton trung hòa (hay các hạt neutrino). Electron là hạt ổn định và là lepton mang điện phổ biến nhất trong Vũ trụ, trong khi muon và tau là những hạt không bền mà nhanh chóng phân rã sau khi được tạo ra từ các va chạm năng lượng cao, như ở phản ứng tia vũ trụ bắn phá bầu khí quyển hoặc thực hiện trong các máy gia tốc.[110][111] Các lepton mang điện có thể kết hợp với các hạt khác để tạo thành nhiều loại hạt tổ hợp khác nhau như các nguyên tử và positronium. Electron chi phối gần như mọi tính chất hóa học của các nguyên tố và hợp chất do chúng tạo nên các obitan nguyên tử. Neutrino tương tác rất hiếm với các hạt khác, và do vậy rất khó theo dõi được chúng. Các dòng hạt chứa hàng tỷ tỷ neutrino bay khắp Vũ trụ nhưng hầu hất đều không tương tác với vật chất thông thường.[112]

Có một giai đoạn ngắn trong quá trình tiến hóa lúc sơ khai của Vũ trụ mà các hạt lepton chiếm lĩnh khối lượng chủ yếu. Nó bắt đầu gần 1 giây sau Vụ Nổ Lớn, sau khi phần lớn các hadron và phản hadron hủy lẫn nhau khi kết thúc kỷ nguyên hadron. Trong kỷ nguyên lepton, nhiệt độ của Vũ trụ vẫn còn đủ cao để duy trì các phản ứng sinh cặp lepton/phản-lepton, do đó lúc này các lepton và phản-lepton ở trong trạng thái cân bằng nhiệt động. Đến xấp xỉ 10 giây kể từ Vụ Nổ Lớn, nhiệt độ của Vũ trụ giảm xuống dưới điểm mà cặp lepton và phản-lepton không thể tạo ra được nữa.[113] Gần như toàn bộ lepton và phản-lepton sau đó hủy lẫn nhau, chỉ còn lại dư một ít lepton. Khối lượng-năng lượng của Vũ trụ khi đó chủ yếu do các photon đóng góp và Vũ trụ tiến tới giai đoạn kỷ nguyên photon.[114][115]

Photon

Bài chi tiết: Kỷ nguyên photonXem thêm: Photino

Photon là hạt lượng tử của ánh sáng và tất cả các bức xạ điện từ khác. Nó cũng là hạt truyền tương tác của lực điện từ, thậm chí đối với trường hợp tương tác thông qua các photon ảo. Hiệu ứng của lực điện từ có thể dễ dàng quan sát trên cấp vi mô và vĩ mô bởi vì photon có khối lượng nghỉ bằng 0; điều này cho phép tương tác có phạm vi tác dụng trên khoảng cách lớn. Giống như tất cả các hạt sơ cấp khác, photon được giải thích tốt bằng cơ học lượng tử và nó thể hiện lưỡng tính sóng hạt, các tính chất có của sóng lẫn của hạt.

Kỷ nguyên photon bắt đầu sau khi đa phần các lepton và phản-lepton hủy lẫn nhau tại cuối kỷ nguyên lepton, khoảng 10 giây sau Big Bang. Hạt nhân nguyên tử được tạo ra trong quá trình tổng hợp hạt nhân xuất hiện trong thời gian một vài phút của kỷ nguyên photon. Vũ trụ trong kỷ nguyên này bao gồm trạng thái vật chất plasma nóng đặc của các hạt nhân, electron và photon. Khoảng 380.000 năm sau Big Bang, nhiệt độ của Vũ trụ giảm xuống tới giá trị cho phép các electron có thể kết hợp với hạt nhân nguyên tử để tạo ra các nguyên tử trung hòa. Kết quả là, photon không còn thường xuyên tương tác với vật chất nữa và Vũ trụ trở lên "sáng rõ" hơn. Các photon có dịch chuyển đỏ lớn từ giai đoạn tạo nên bức xạ nền vi sóng vũ trụ. Những thăng giáng nhỏ trong nhiệt độ và mật độ phát hiện thấy trong CMB chính là những "mầm mống" sơ khai mà từ đó các cấu trúc trong Vũ trụ hình thành lên.[108]: 244–266

[hiện]

x

t

s

Timeline of the Big Bang

Các mô hình vũ trụ học

Mô hình dựa trên thuyết tương đối tổng quát

Bài chi tiết: Nghiệm của phương trình trường EinsteinXem thêm: Big Bang và Số phận sau cùng của vũ trụ

Thuyết tương đối rộng là lý thuyết hình học về lực hấp dẫn do Albert Einstein đưa ra vào năm 1915 và là miêu tả hiện tại của hấp dẫn trong vật lý hiện đại. Nó là cơ sở cho các mô hình vật lý của Vũ trụ. Thuyết tương đối tổng quát mở rộng phạm vi của thuyết tương đối hẹp và định luật vạn vật hấp dẫn của Newton, đưa đến cách miêu tả thống nhất về hấp dẫn như là tính chất hình học của không gian và thời gian, hay không thời gian. Đặc biệt, độ cong của không thời gian có liên hệ trực tiếp với năng lượng và động lượng của vật chất và bức xạ có mặt trong một thể tích cho trước. Liên hệ này được xác định bằng phương trình trường Einstein, một hệ phương trình vi phân riêng phần. Trong thuyết tương đối rộng, sự phân bố của vật chất và năng lượng xác định ra hình học của không thời gian, từ đó miêu tả chuyển động có gia tốc của vật chất. Do vậy, một trong các nghiệm của phương trình trường Einstein miêu tả sự tiến triển của Vũ trụ. Kết hợp với các giá trị đo về số lượng, loại và sự phân bố của vật chất trong Vũ trụ, các phương trình của thuyết tương đối tổng quát miêu tả sự vận động của Vũ trụ theo thời gian.[116]

Với giả sử của nguyên lý vũ trụ học về Vũ trụ có tính chất đồng nhất và đẳng hướng ở khắp nơi, có một nghiệm cụ thể chính xác của phương trình trường miêu tả Vũ trụ đó là tenxơ mêtric gọi là mêtric Friedmann–Lemaître–Robertson–Walker,

{\displaystyle ds^{2}=-c^{2}dt^{2}+R(t)^{2}\left({\frac {dr^{2}}{1-kr^{2}}}+r^{2}d\theta ^{2}+r^{2}\sin ^{2}\theta \,d\phi ^{2}\right)}📷

trong đó (r, θ, φ) là các tọa độ tương ứng trong hệ tọa độ cầu. Mêtric này chỉ có hai tham số chưa xác định. Đó là tham số không thứ nguyên tỷ lệ dịch chuyển độ dài (dimensionless length scale factor) R miêu tả kích thước của Vũ trụ như là một hàm số của thời gian; giá trị R tăng biểu thị cho sự giãn nở của Vũ trụ.[117] Chỉ số độ cong k miêu tả hình học của Vũ trụ. Chỉ số k được định nghĩa bằng 0 tương ứng cho hình học Euclid phẳng, bằng 1 tương ứng với không gian có độ cong toàn phần dương, hoặc bằng −1 tương ứng với không gian có độ cong âm.[118] Giá trị của hàm số R theo biến thời gian t phụ thuộc vào chỉ số k và hằng số vũ trụ học Λ.[116] Hằng số vũ trụ học biểu diễn cho mật độ năng lượng của chân không trong Vũ trụ và có khả năng liên hệ tới năng lượng tối.[80] Phương trình miêu tả R biến đổi như thế nào theo thời gian được gọi là phương trình Friedmann mang tên nhà vật lý Alexander Friedmann.[119]

Kết quả thu được cho R(t) phụ thuộc vào k và Λ, nhưng nó có một số đặc trưng tổng quát. Đầu tiên và quan trọng nhất, tỷ lệ dịch chuyển độ dài R của Vũ trụ sẽ không đổi chỉ khinếu Vũ trụ là đẳng hướng hoàn hảo với độ cong toàn phần dương (k=1) và có một giá trị chính xác về mật độ ở khắp nơi, như được lần đầu tiên chỉ ra bởi Albert Einstein.[116] Tuy vậy, trạng thái cân bằng này là không ổn định: bởi vì các quan sát cho thấy Vũ trụ có vật chất phân bố bất đồng nhất trên phạm vi nhỏ, R phải thay đổi theo thời gian. Khi R thay đổi, mọi khoảng cách không gian trong Vũ trụ cũng thay đổi tương ứng; dẫn tới có một sự giãn nở hoặc co lại trên tổng thể của không gian Vũ trụ. Hiệu ứng này giải thích cho việc quan sát thấy các thiên hà dường như đang lùi ra xa so với nhau; bởi vì không gian giữa chúng đang giãn ra. Sự giãn nở của không gian cũng giải thích lý do vì sao hai thiên hà có thể nằm cách nhau 40 tỷ năm ánh sáng, mặc dù chúng có thể hình thành ở một thời điểm nào đó cách đây gần 13,8 tỷ năm[120] và không bao giờ chuyển động đạt tới tốc độ ánh sáng.

Thứ hai, trong các nghiệm có một đặc tính đó là tồn tại kỳ dị hấp dẫn trong quá khứ, khi R tiến tới 0 và năng lượng và vật chất có mật độ lớn vô hạn. Dường như đặc điểm này là bất định bởi vì điều kiện biên ban đầu để giải phương trình vi phân riêng phần dựa trên giả sử về tính đồng nhất và đẳng hướng (nguyên lý vũ trụ học) và chỉ xét tới tương tác hấp dẫn. Tuy nhiên, định lý kỳ dị Penrose–Hawking chứng minh rằng đặc điểm kỳ dị này xuất hiện trong những điều kiện rất tổng quát. Do vậy, theo phương trình trường Einstein, R lớn lên nhanh chóng từ một trạng thái nóng đặc cực độ, xuất hiện ngay lập tức sau kỳ dị hấp dẫn (tức khi R có giá trị nhỏ hữu hạn); đây là tính chất cơ bản của mô hình Vụ Nổ Lớn của Vũ trụ. Để hiểu bản chất kỳ dị hấp dẫn của Big Bang đòi hỏi một lý thuyết lượng tử về hấp dẫn, mà vẫn chưa có lý thuyết nào thành công hay được xác nhận bằng thực nghiệm.[121]

Thứ ba, chỉ số độ cong k xác định dấu của độ cong không gian trung bình của không-thời gian[118] trên những khoảng cách lớn (lớn hơn khoảng 1 tỷ năm ánh sáng). Nếu k=1, độ cong là dương và Vũ trụ có thể tích hữu hạn.[122] Những vũ trụ như thế được hình dung là một mặt cầu 3 chiều nhúng trong một không gian bốn chiều. Ngược lại, nếu k bằng 0 hoặc âm, Vũ trụ có thể tích vô hạn.[122] Có một cảm nhận phản trực giác đó là dường như một vũ trụ lớn vô hạn được tạo ra tức thì từ thời điểm Vụ Nổ Lớn khi R=0 và mật độ vô hạn, nhưng điều này đã được tiên đoán chính xác bằng toán học khi k không bằng 1. Có thể hình dung một cách tương tự, một mặt phẳng rộng vô hạn có độ cong bằng 0 và diện tích lớn vô hạn, trong khi một hình trụ dài vô hạn có kích thước hữu hạn theo một hướng và một hình xuyến có cả hai đều là hữu hạn. Vũ trụ với mô hình dạng hình xuyến có tính chất giống với Vũ trụ thông thường với điều kiện biên tuần hoàn (periodic boundary conditions).

Số phận sau cùng của vũ trụ vẫn còn là một câu hỏi mở, bởi vì nó phụ thuộc chủ yếu vào chỉ số độ cong k và hằng số vũ trụ Λ. Nếu mật độ Vũ trụ là đủ đậm đặc, k sẽ có thể bằng +1, có nghĩa rằng độ cong trung bình của nó đa phần là dương và Vũ trụ cuối cùng sẽ tái suy sụp trong Vụ Co Lớn,[123] và có thể bắt đầu một vũ trụ mới từ Vụ Nẩy Lớn (Big Bounce). Ngược lại, nếu Vũ trụ không đủ đậm đặc, k sẽ bằng 0 hoặc −1 và Vũ trụ sẽ giãn nở mãi mãi, nguội lạnh dần đi và cuối cùng đạt tới Vụ đóng băng lớn và cái chết nhiệt của vũ trụ.[116] Các số liệu hiện tại cho thấy tốc độ giãn nở của Vũ trụ không giảm dần, mà ngược lại tăng dần; nếu quá trình này kéo dài mãi, Vũ trụ cuối cùng sẽ đạt tới Vụ Xé Lớn (Big Rip). Trên phương diện quan trắc, Vũ trụ dường như có hình học phẳng (k = 0), và mật độ trung bình của nó rất gần với giá trị tới hạn giữa khả năng tái suy sụp và giãn nở mãi mãi.[124]

6
26 tháng 1 2019

z thì ai tạo ra vũ trụ bt ko?

1 tháng 2 2019

Vũ trụ xàm lắm tạo nhóm về toán đi :V

CÓ HY VỌNG TÌM RA SỰ SỐNG NGOÀI TRÁI ĐẤT KHÔNG ? Nơi có khả năng tìm thấy nhiều sự sống nhất trong hệ Mặt Trời chính là vệ tinh số 2 của sao Mộc. Vệ tinh này nhỏ hơn Mặt Trăng một chút và bị một lớp băng dày hàng chục km che phủ, phía dưới lớp băng là đại dương. Nếu thực sự như vậy thì đại dương có thể được ''hâm nóng'' bởi núi lửa, sự ấm áp có thể duy trì...
Đọc tiếp

CÓ HY VỌNG TÌM RA SỰ SỐNG NGOÀI TRÁI ĐẤT KHÔNG ?

Nơi có khả năng tìm thấy nhiều sự sống nhất trong hệ Mặt Trời chính là vệ tinh số 2 của sao Mộc. Vệ tinh này nhỏ hơn Mặt Trăng một chút và bị một lớp băng dày hàng chục km che phủ, phía dưới lớp băng là đại dương. Nếu thực sự như vậy thì đại dương có thể được ''hâm nóng'' bởi núi lửa, sự ấm áp có thể duy trì được sự sống nguyên thủy, loài sinh vật này sinh sống không dựa vào năng lượng Mặt Trời mà dựa vào các vật chất hóa học. Cho đến nay chúng ta vẫn chưa phát hiện được bất kì dấu vết nào của sự sống ngoài Trái Đất. Nếu tiếp tục đi ra phía ngoài chúng ta sẽ đến sao Thổ và mục tiêu thăm dò của loài người là vệ tinh lớn nhất của nó - vệ tinh số 6. Vệ tinh này là phòng thực nghiệm cho khởi nguồn của sự sống. Do nhiệt độ ở đó lạnh đến âm 200 độ C nên nó không thể là nơi sinh ra sự sống nhưng dưới bầu khí quyển đặc vẫn còn có nhiều hydro, cacbon, thông qua tia tử ngoại của Mặt Trời có thể xảy ra phản ứng hóa học và phản ứng quan hóa học này sẽ sinh ra phân tử hữu cơ - đây chính là bước đầu tiên tạo ra sự sống. Có điều trên vệ tinh này nhiệt độ quá thấp nên không thể đi tiếp đến bước thứ hai trong quá trình tạo ra sự sống. Vệ tinh số 6 của sao Thổ giống như một Trái Đất bị đóng băng. Trong tầng khí quyển của vệ tinh này có lượng khí nitơ phong phú và còn chứa các phân tử nước nữa. Nước là do các sao chổi mang đến nhưng để sinh ra sự sống thì cần phải có năng lượng. Và muốn có năng lượng thì chúng (những hợp chất hữu cơ này) phải đợi 5 tỉ năm nữa khi Mặt Trời biến thành một hồng cự tinh thì ánh sáng mạnh mẽ đó mới đủ cung cấp năng lượng cho chúng.

Kể từ năm 1983 con người bắt đầu dùng máy vô tuyến để thu nhận những tín hiệu phát đến từ bên ngoài hành tinh nhưng chúng ta vẫn chưa nhận được bất cứ một tín hiệu nào cả. Tuy nhiên có rất nhiều chứng cớ chứng minh rằng các hằng tinh khác cũng có hành tinh và trong những hành tinh đó rất có thể có một thế giới giống như ở Trái Đất. Những hằng tinh này được hình thành do vật chất trong không -gian và được sinh ra trong những đám mây khí và bụi trong khắp hệ Ngân Hà. Điều làm cho các nhà thiên văn học hứng thú là những đám tinh vân này bao hàm những vật chất cơ bản sinh ra sự sống đó là nước và các phân tử hữu cơ.

3
27 tháng 1 2019

và gì bn

27 tháng 1 2019

mai mk đăng tiếp nha, mong bn thông cảm😰 😰