K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 7 2021

1.2

a.

\(\overrightarrow{AB}=\left(4;-2\right)=2\left(2;-1\right)\Rightarrow\) đường thẳng AB nhận (1;2) là 1 vtpt

Phương trình đường thẳng AB:

\(1\left(x+1\right)+2\left(y-4\right)=0\Leftrightarrow x+2y-7=0\)

b.

Gọi M là trung điểm AB \(\Rightarrow M\left(1;3\right)\)

\(AB=\sqrt{4^2+\left(-2\right)^2}=2\sqrt{5}\) \(\Rightarrow AM=\dfrac{1}{2}AB=\sqrt{5}\)

Đường tròn đường kính AB có tâm M và bán kính \(R=AM=\sqrt{5}\) nên có pt:

\(\left(x-1\right)^2+\left(y-3\right)^2=5\)

NV
30 tháng 7 2021

1.1

a. \(\overrightarrow{CB}=\left(5;15\right)=5\left(1;3\right)\) ; \(\overrightarrow{CA}=\left(7;11\right)\)

Đường cao qua A vuông góc BC nên nhận (1;3) là 1 vtpt

Phương trình đường cao đi qua A có dạng:

\(1\left(x-4\right)+3\left(y-3\right)=0\Leftrightarrow x+3y-13=0\)

Đường cao qua B vuông góc AC nhận (7;11) là 1 vtpt có dạng

\(7\left(x-2\right)+11\left(y-7\right)=0\Leftrightarrow7x+11y-91=0\)

Trực tâm H là giao điểm 2 đường cao nên tọa độ thỏa mãn:

\(\left\{{}\begin{matrix}x+3y-13=0\\7x+11y-91=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=13\\y=0\end{matrix}\right.\)

\(\Rightarrow H\left(13;0\right)\)

11 tháng 4 2020

1/ Hướng làm như sau:

- Ta sẽ viết phương trình đường thẳng của 2 cạnh AB và AC trước

- Lấy một điểm bất kỳ thuộc đường phân giác trong của góc A. Vì điểm nằm trên đường phân giác cách đều 2 tia tạo thành góc đó nên ta sẽ tính khoảng cách giữa điểm đó với 2 cạnh của tam giác rồi cho chúng bằng nhau

\(\overrightarrow{AB}=\left(1-\frac{7}{4};2-3\right)=\left(-\frac{3}{4};-1\right)\Rightarrow AB:\left(x-1\right)-\frac{3}{4}\left(y-2\right)=0\)

\(\Rightarrow AB:x-\frac{3}{4}y+\frac{1}{2}=0\)

\(\overrightarrow{AC}=\left(-4-\frac{7}{4};3-3\right)=\left(-\frac{23}{4};0\right)\) \(\Rightarrow AC:\frac{23}{4}\left(y-3\right)=0\Rightarrow AC:\frac{23}{4}y-\frac{69}{4}=0\)

Gọi \(M\left(x;y\right)\) là điểm thuộc đường phân giác góc A và nằm trên BC

\(\Rightarrow d\left(M;AB\right)=\frac{\left|1.x_M-\frac{3}{4}y_M+\frac{1}{2}\right|}{\sqrt{1+\frac{9}{16}}}=...\)

\(\Rightarrow d\left(M;AC\right)=\frac{\left|0.x_M+\frac{23}{4}.y_M-\frac{69}{4}\right|}{\sqrt{0+\left(\frac{23}{4}\right)^2}}=...\)

\(d\left(M;AB\right)=d\left(M;AC\right)\Leftrightarrow\frac{\left|x_M-\frac{3}{4}y_M+\frac{1}{2}\right|}{\frac{5}{4}}=\frac{\left|\frac{23}{4}y_M-\frac{69}{4}\right|}{\frac{23}{4}}\)

\(\Leftrightarrow\left[{}\begin{matrix}23\left(x_M-\frac{3}{4}y_M+\frac{1}{2}\right)=5\left(\frac{23}{4}y_M-\frac{69}{4}\right)\\23\left(x_M-\frac{3}{4}y_M+\frac{1}{2}\right)=5\left(\frac{69}{4}-\frac{23}{4}y_M\right)\end{matrix}\right.\)

Đến đây ta thấy vẫn còn 2 ẩn là xM và yM. Mà \(M\in BC\) nên ta sẽ sử dụng phương trình đường thẳng BC để đưa về một ẩn

\(\overrightarrow{BC}=\left(-4-1;3-2\right)=\left(-5;1\right)\) \(\Rightarrow BC:-5\left(x-1\right)+\left(y-2\right)=0\)

\(\Rightarrow BC:-5x+y+3=0\) \(\Rightarrow y_M=5x_M-3\)

Đến đây thay vô là được thôi bạn :) Có 2 trường hợp đó, một cái là điểm M nằm trong, dành cho phân giác trong và ngược lại.

Và làm thế nào để biết được đâu là trong đâu là ngoài? Đơn giản thôi, ta thấy điểm M thuộc BC, sẽ có \(\overrightarrow{BM}=x\overrightarrow{MC}\)

Nếu x>0 nghĩa là M nằm trên đoạn BC còn nếu <0 nghĩa là nằm ngoài BC. Câu 2 tương tự nhé :3

P/s: Tính toán lại hộ mình nhé :<< Nhiều số quá rối hết cả mắt :<<

NV
12 tháng 4 2020

Câu 1 có 1 cách giải đơn giản ngắn gọn:

- Tính vecto \(\overrightarrow{BC}\) ; \(\overrightarrow{AB};\overrightarrow{AC}\Rightarrow\) độ dài AB;AC;BC

- Gọi D là chân đường phân giác trong của A trên BC

- Theo định lý phân giác: \(\frac{DB}{AB}=\frac{DC}{AC}\Rightarrow\) tỉ lệ \(\frac{BD}{DC}\)

\(\Rightarrow\) Tọa độ D (điểm chia đoạn thẳng theo tỉ số k)

\(\Rightarrow\) Phương trình AD

Câu 2

Làm tương tự, sau khi tìm được tọa độ chân đường phân giác trong \(\Rightarrow\) tính được vecto \(\overrightarrow{AD}\)

Do 2 đường phân giác trong và ngoài vuông góc nên đường phân giác ngoài nhận \(\overrightarrow{AD}\) là 1 vtpt. Vậy là viết được pt phân giác ngoài

NV
23 tháng 12 2022

a.

\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(-1;8\right)\\\overrightarrow{AC}=\left(3;6\right)\end{matrix}\right.\) mà \(\dfrac{-1}{3}\ne\dfrac{8}{6}\Rightarrow\overrightarrow{AB}\) và \(\overrightarrow{AC}\) không cùng phương hay A,B,C không thẳng hàng

\(\Rightarrow A,B,C\) là 3 đỉnh của 1 tam giác

b.

Theo công thức trung điểm: \(\left\{{}\begin{matrix}x_I=\dfrac{x_A+x_C}{2}=\dfrac{1+4}{2}=\dfrac{5}{2}\\y_I=\dfrac{y_A+y_C}{2}=\dfrac{-3+3}{2}=0\end{matrix}\right.\)

\(\Rightarrow C\left(\dfrac{5}{2};0\right)\)

Gọi G là trọng tâm tam giác, theo công thức trọng tâm: 

\(\left\{{}\begin{matrix}x_G=\dfrac{x_A+x_B+x_C}{3}=\dfrac{1+0+4}{3}=\dfrac{5}{3}\\y_G=\dfrac{y_A+y_B+y_C}{3}=\dfrac{-3+5+3}{3}=\dfrac{5}{3}\\\end{matrix}\right.\) \(\Rightarrow G\left(\dfrac{5}{3};\dfrac{5}{3}\right)\)

c.

Gọi \(D\left(x;y\right)\Rightarrow\overrightarrow{DC}=\left(4-x;3-y\right)\)

ABCD là hình bình hành khi \(\overrightarrow{AB}=\overrightarrow{DC}\)

\(\Rightarrow\left\{{}\begin{matrix}4-x=-1\\3-y=8\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=5\\y=-5\end{matrix}\right.\)

\(\Rightarrow D\left(5;-5\right)\)

AH
Akai Haruma
Giáo viên
6 tháng 2

Lời giải:
Gọi $G(a,b)$ là trọng tâm tam giác. Ta có:

$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}$

$\Leftrightarrow (1-a, 4-b)+(2-a, -3-b)+(1-a, -2-b)=(0,0)$

$\Leftrightarrow (1-a+2-a+1-a, 4-b-3-b-2-b)=(0,0)$

$\Leftrightarrow (5-3a, -1-3b)=(0,0)$

$\Rightarrow 5-3a=0; -1-3b=0$

$\Rightarrow a=\frac{5}{3}; b=\frac{-1}{3}$

b.

Để $A,B,D$ thẳng hàng thì:

$\overrightarrow{AB}=k\overrightarrow{AD}$ với $k$ là số thực $\neq 0$

$\Leftrightarrow (1,-7)=k(-2, 3m-1)$

$\Leftrightarrow \frac{1}{-2}=\frac{-7}{3m-1}$

$\Rightarrow m=5$

9 tháng 7 2018

6 tháng 4 2020

b/ Gọi A' có tọa độ là (x;y) ta có : \(\left\{{}\begin{matrix}\overrightarrow{AA'}=\left(x+5,y-6\right)\\\overrightarrow{BC}=\left(8,4\right)\\\overrightarrow{BA'}=\left(x+4;y+1\right)\end{matrix}\right.\)

Từ giả thiết có A' là hình chiếu của A trên BC nếu \(AA'\perp BC\) và B,A',C thẳng hàng

\(\Leftrightarrow\left\{{}\begin{matrix}\overrightarrow{AA'}.\overrightarrow{BC}=0\left(1\right)\\\overrightarrow{BA'}=k\overrightarrow{BC}\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Leftrightarrow8\left(x+5\right)+4\left(y-6\right)=0\Leftrightarrow8x+4y+16=0\)

\(\left(2\right)\Leftrightarrow\frac{x+4}{8}=\frac{y+1}{4}\Leftrightarrow4x-8y+8=0\)

Giải hệ ta được x = -2 và y = 0

=> A'=(-2;0)

20 tháng 5 2017

a) Gọi H là hình chiếu của A trên tam giác, suy ra H là trung điểm BC.

\(AH=d\left(A,BC\right)=\dfrac{9}{\sqrt{2}}\)

Phương pháp tọa độ trong mặt phẳng

NV
14 tháng 5 2021

a. 

\(\overrightarrow{BC}=\left(-2;-4\right)=-2\left(1;2\right)\Rightarrow\) đường thẳng BC nhận (1;2) là 1 vtcp

Phương trình BC: \(\left\{{}\begin{matrix}x=-1+t\\y=4+2t\end{matrix}\right.\)

b.

\(\overrightarrow{AB}=\left(-2;1\right)\Rightarrow R^2=AB^2=\left(-2\right)^2+1^2=5\)

Phương trình đường tròn: \(\left(x-1\right)^2+\left(y-3\right)^2=5\)

c.

\(\overrightarrow{AB}.\overrightarrow{BC}=-2.\left(-2\right)+1.\left(-4\right)=0\Rightarrow AB\perp BC\)

\(\Rightarrow H\) trùng B hay tọa độ H là: \(H\left(-1;4\right)\)