K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2021

*, Kẻ OH vuông AB, H \(\in\)AB 

=> H là trung điểm AB 

=> HB = AB/2 = 40/2 = 20 cm 

Theo định lí Pytago tam giác OBH vuông tại H 

\(OH=\sqrt{OB^2-HB^2}=15\)cm 

*, Kẻ OT vuông CD, T \(\in\)CD

=> T là trung điểm CD 

=> TD = DC/2 = 48/2 = 24 cm 

Theo định lí Pytago tam giác ODC vuông tại T

\(OT=\sqrt{OD^2-DT^2}=7\)cm 

 

29 tháng 9 2019

Kẻ OK ⊥ CD ⇒ CK = DK = (1/2).CD

Kẻ OH ⊥ AB ⇒ AH = BH = (1/2).AB

Vì AB // CD nên H, O, K thẳng hàng

Áp dụng định lí Pitago vào tam giác vuông OBH ta có:

O B 2 = B H 2 + O H 2

Suy ra: O H 2 = O B 2 - B H 2 = 25 2 - 20 2 = 225

OH = 15 (cm)

Áp dụng định lí Pitago vào tam giác vuông ODK ta có:

O D 2 = D K 2 + O K 2

Suy ra: O K 2 = O D 2 - D K 2 = 25 2 - 24 2  = 49

OK = 7 (cm)

Giải sách bài tập Toán 9 | Giải bài tập Sách bài tập Toán 9

* Trường hợp O nằm giữa hai dây AB và CD (hình a):

HK = OH + OK = 15 + 7 = 22 (cm)

* Trường hợp O nằm ngoài hai dây AB và CD (hình b):

HK = OH – OK = 15 – 7 = 8 (cm)

13 tháng 6 2018

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ OM ⊥ AB, ON ⊥ CD.

Ta thấy M, O, N thẳng hàng. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Áp dụng định lí Pitago trong tam giác vuông AMO có:

OM2 = OA2 – AM2 = 252 – 202 = 225

=> OM = √225 = 15cm

=> ON = MN – OM = 22 – 15 = 7 (cm)

Áp dụng định lí Pitago trong tam giác vuông CON có:

CN2 = CO2 – ON2 = 252 – 72 = 576

=> CN = √576 = 24

=> CD = 2CN = 48cm

6 tháng 4 2017

 

Để học tốt Toán 9 | Giải bài tập Toán 9

Kẻ OM ⊥ AB, ON ⊥ CD.

Ta thấy M, O, N thẳng hàng. Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Áp dụng định lí Pitago trong tam giác vuông AMO có:

O M 2   =   O A 2   –   A M 2   =   25 2   –   20 2 =   22 2

=> OM = √225 = 15cm

=> ON = MN – OM = 22 – 15 = 7 (cm)

Áp dụng định lí Pitago trong tam giác vuông CON có:

C N 2   =   C O 2   –   O N 2   =   25 2   –   7 2   =   576

=> CN = √576 = 24

=> CD = 2CN = 48cm

14 tháng 10 2019

tích cho t đi

15 tháng 7 2020

22cm A M B C N D O

Kẻ \(OM\perp AB , ON\perp CD\)

Ta thấy M, O, N thẳng hàng. Ta có:

\(AM=\frac{1}{2}AB=20cm ; MN=22cm\)

Áp dụng định lí Pitago trong tam giác vuông AMO có:

OM2 = OA2 – AM2 = 252 – 202 = 225

=> OM = \(\sqrt{225}\) = 15cm

=> ON = MN – OM = 22 – 15 = 7 (cm)

Áp dụng định lí Pitago trong tam giác vuông CON có:

CN2 = CO2 – ON2 = 252 – 72 = 576

=> CN = \(\sqrt{576}\) = 24

=> CD = 2CN = 48cm

Gọi H,K lần lượt là trung điểm của AB,CD

ΔAOB cân tại O

mà OH là đường trung tuyến

nên OH vuông góc AB

=>d(O;AB)=OH

ΔOCD cân tại O

mà OK là đường trung tuyến

nên OK vuông góc CD

=>d(O;CD)=OK

H là trung điểm của AB

=>HA=HB=40/2=20cm

K là trung điểm của CD

=>KC=KD=48/2=24cm

ΔOHA vuông tại H

=>OH^2+HA^2=OA^2

=>OH^2=25^2-20^2=225

=>OH=15(cm)

ΔOKC vuông tạiK

=>OK^2+KC^2=OC^2

=>OK=7(cm)

OH vuông góc AB

AB//CD

=>OH vuông góc CD

mà OK vuông góc CD

nên O,H,K thẳng hàng

=>HK=OH+OK=7+15=22cm

=>d(AB;CD)=22cm