Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a.n_{NaCl}=0,2.2=0,4\left(mol\right)\\ n_{CaCl_2}=0,5.0,2=0,1\left(mol\right)\\ \left[Na^+\right]=\left[NaCl\right]=\dfrac{0,4.1}{0,2+0,2}=1\left(M\right)\\ \left[Ca^{2+}\right]=\left[CaCl_2\right]=\dfrac{0,1.1}{0,2+0,2}=0,25\left(M\right)\\ \left[Cl^-\right]=1.1+0,25.2=1,5\left(M\right)\)
\(b.\\ n_{MgSO_4}=\dfrac{12}{120}=0,1\left(mol\right)\\ n_{Al_2\left(SO_4\right)_3}=\dfrac{34,2}{342}=0,1\left(mol\right)\\ \left[Mg^{2+}\right]=\left[MgSO_4\right]=\dfrac{0,1}{0,2+0,3}=0,2\left(M\right)\\ \left[Al^{3+}\right]=2.\left[Al_2\left(SO_4\right)_3\right]=2.\dfrac{0,1}{0,2+0,3}=0,4\left(M\right)\\ \left[SO^{2-}_4\right]=0,2.1+0,2.3=0,8\left(M\right)\)
\(n_{OH^-}=0,5.0,2+0,2.2.0,3=0,22\left(mol\right)\Rightarrow\left[OH^-\right]=\dfrac{0,22}{0,5}=0,44M\)
\(n_{Na^+}=0,5.0,2=0,1\left(mol\right)\Rightarrow\left[Na^+\right]=\dfrac{0,1}{0,5}=0,2M\)
\(n_{Ba^{2+}}=0,2.0,3=0,06\left(mol\right)\Rightarrow\left[Ba^{2+}\right]=\dfrac{0,06}{0,5}=0,12M\)
a, \(\left[Ca^{2+}\right]=\dfrac{0,15.0,5}{0,15+0,05}=0,375M\)
\(\left[Na^+\right]=\dfrac{0,05.2}{0,15+0,05}=0,5M\)
\(\left[Cl^-\right]=\dfrac{0,15.2.0,5+0,05.2}{0,15+0,05}=1,25M\)
Bài 1:
Ta có: \(n_{OH^-}=n_{Na^+}=n_{NaOH}=0,2.0,4=0,08\left(mol\right)\)
\(n_{H^+}=n_{Cl^-}=n_{HCl}=0,4.0,3=0,12\left(mol\right)\)
PT ion: \(OH^-+H^+\rightarrow H_2O\)
_____0,08_____0,12 (mol)
⇒ nOH- (dư) = 0,04 (mol)
\(\Rightarrow\left\{{}\begin{matrix}\left[Na^+\right]=\frac{0,08}{0,6}\approx0,133M\\\left[Cl^-\right]=\frac{0,12}{0,6}=0,2M\\\left[OH^-\right]=\frac{0,04}{0,6}\approx0,066M\end{matrix}\right.\)
Câu 2:
Ta có: \(\Sigma n_{K^+}=n_{KCl}+2n_{K_2SO_4}=0,2.1,5+0,3.2.2=1,5\left(mol\right)\)
\(n_{Cl^-}=n_{KCl}=0,2.1,5=0,3\left(mol\right)\)
\(n_{SO_4^{2-}}=0,3.2=0,6\left(mol\right)\)
\(\Rightarrow\left\{{}\begin{matrix}\left[K^+\right]=\frac{1,5}{0,5}=3M\\\left[Cl^-\right]=\frac{0,3}{0,5}=0,6M\\\left[SO_4^{2-}\right]=\frac{0,6}{0,5}=1,2M\end{matrix}\right.\)
Bạn tham khảo nhé!
a) Ta có: \(\left\{{}\begin{matrix}n_{CuCl_2}=0,3\left(mol\right)\\n_{BaCl_2}=0,1\left(mol\right)\end{matrix}\right.\)
\(\Rightarrow\left[Cu\right]=\dfrac{0,3}{0,5}=0,6\left(M\right)\\ \Rightarrow\left[Ba\right]=\dfrac{0,1}{0,5}=0,2\left(M\right)\\ \Rightarrow\left[Cl\right]=\dfrac{0,3.2+0,1.2}{0,5}=1,6\left(M\right)\)