Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
p) \(x^3-3x^2+3x-1+2\left(x^2-x\right)\\ =\left(x^3-1\right)-\left(3x^2-3x\right)+2x\left(x-1\right)\\ =\left(x-1\right)\left(x^2+x+1\right)-3x\left(x-1\right)+2x\left(x-1\right)\\ =\left(x-1\right)\left(x^2+x+1-3x+2x\right)\\ =\left(x-1\right)\left(x^2+1\right)\)
p:Ta có: \(x^3-3x^2+3x-1+2\left(x^2-x\right)\)
\(=\left(x-1\right)^3+2x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-2x+1+2x\right)\)
\(=\left(x-1\right)\left(x^2+1\right)\)
a: \(-4x^3\left(x^2-3x+2\right)=-4x^5+12x^4-8x^3\)
b: \(-\dfrac{2}{5}x^2\left(5x^3+10x^2-15x\right)=-2x^5-4x^4+6x^3\)
\(1,\\ a,=x^3-5x\\ b,=3x^3y-6x^3y^2+9xy\\ c,=6x^2-6x-36\\ d,=x^3+2x^2y-3xy^2\\ 2,\\ a,=4x^2-25\\ b,=x^2-6x+9\\ c,=9x^2+24x+16\\ d,=x^3-6x^2y+12xy^2-8y^3\\ e,=125x^3+225x^2y+135xy^2+27y^3\\ f,=125-x^3\)
\(g,=8y^3+x^3\\ 3,\\ a,=x\left(x+2\right)\\ b,=\left(x-3\right)^2\\ c,=\left(x-y\right)\left(y+5\right)\\ d,=2x\left(y+1\right)-y\left(y+1\right)=\left(2x-y\right)\left(y+1\right)\\ e,=6x^2y^2\left(xy^2+2y-3x\right)\)
5) a) 2x(x^2 - 9) = 0
<=> 2x(x - 3)(x + 3) = 0
<=> x = 0 hoặc x = 3 hoặc x = -3
b) 2x(x - 2021) - x + 2021 = 0
<=> (2x - 1)(x - 2021) = 0
<=> 2x - 1 = 0 hoặc x - 2021 = 0
<=> x = 1/2 hoặc x = 2021
c) 4x^2 - 16x = 0
<=> 4x(x - 4) = 0
<=> x = 0 hoặc x = 4
d) (3x + 7)^2 - (x + 1)^2 = 0
<=> (3x + 7 + x + 1)(3x + 7 - x - 1) = 0
<=> (4x + 8)(2x + 6) = 0
<=> 4x + 8 = 0 hoặc 2x + 6 = 0
<=> x = -2 hoặc x = -3
\(x^2-3x+2=0\)
\(\left(x^2-x\right)-\left(2x-2\right)=0\)
\(\left(x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)
x=1
x=2