Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhìn vào hệ trục tọa độ thấy d < 0 và –c < 0.
Còn lại: c, -d, |c|, |d|, |-c|, |-d| đều lớn hơn 0.
a) Xác định các điểm –a, -b trên trục số:
b) Xác định các điểm |a|, |b|, |-a|, |-b| trên trục số:
c) So sánh các số a, b, -a, -b, |a|, |b|, |-a|, |-b| với 0:
a ở bên trái trục số ⇒ a là số nguyên âm nên a < 0.
Do đó: -a = |-a| = |a| > 0.
b ở bên phải trục số ⇒ b là số nguyên dương nên b = |b| = |-b| > 0 và -b < 0.
a) Xác định các điểm –a, -b trên trục số:
b) Xác định các điểm |a|, |b|, |-a|, |-b| trên trục số:
c) So sánh các số a, b, -a, -b, |a|, |b|, |-a|, |-b| với 0:
a ở bên trái trục số => a là số nguyên âm nên a < 0.
Do đó: -a = |a| = |a| > 0.
b ở bên phải trục số => b là số nguyên dương nên b = |b| = |-b| > 0 và -b < 0.
Bài giải:
a) Xác định các điểm –a, -b trên trục số:
b) Xác định các điểm |a|, |b|, |-a|, |-b| trên trục số:
c) So sánh các số a, b, -a, -b, |a|, |b|, |-a|, |-b| với 0:
a ở bên trái trục số => a là số nguyên âm nên a < 0.
Do đó: -a = |a| = |a| > 0.
b ở bên phải trục số => b là số nguyên dương nên b = |b| = |-b| > 0 và -b < 0.
Cac điểm –c, -d, |c|, |d| |-c|, |-d| được biểu diễn trên trục số: