\(^2\) và đường thẳng (d): y=2mx+1 (m là th...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2022

\(x^2=2mx+1\Leftrightarrow x^2-2mx-1=0\Rightarrow\Delta'>0\Leftrightarrow m^2+1>0\left(luônđúng\right)\)

\(\Rightarrow\left(P\right)\left(d\right)\) \(luôn\) \(cắt\) \(tại2\) \(điểm\) \(pbA;B\Rightarrow\left\{{}\begin{matrix}x_A+x_B=2m\\xa.xb=-1\end{matrix}\right.\)

\(I\) \(trunng\) \(điểmAB\Rightarrow I\left(\dfrac{x_A+x_B}{2};\dfrac{y_A+y_B}{2}\right)=\left(\dfrac{2m}{2};\dfrac{2mx_A+1+2mx_B+1}{2}\right)=\left(m;m.x_A+mx_B+1\right)\)

 \(\Rightarrow OI=\sqrt{10}=\sqrt{m^2+\left(mx_A+mx_B+1\right)^2}\)

\(\Leftrightarrow10=m^2+\left[m\left(x_A+x_B\right)+1\right]^2=m^2+\left(2m^2+1\right)^2\)

\(\Leftrightarrow m^2+4m^4+4m^2+1=10\Leftrightarrow4m^4+5m^2-9=0\)

\(đặt:m^2=t\ge0\Rightarrow4t^2+5t-9=0\Leftrightarrow\left[{}\begin{matrix}t=1\left(tm\right)\Rightarrow m=\pm1\\t=-\dfrac{9}{4}\left(ktm\right)\end{matrix}\right.\)

9 tháng 3 2022

cảm ơn bạn nhiều ạyeu

13 tháng 5 2018

xét phương trình hoành độ giao điểm của ( p ) vả ( d ) 

                    \(x^2=2\left(m+3\right)x+1-4m\)

\(< =>x^2-2\left(m+3\right)x-1+4m=0\)

ta có : ( \(a=1;b=2\left(m+3\right);b'=m+3;c=-1+4m\) )

\(\Delta'=b'^2-ac\)

\(\Delta'=\left(m+3\right)^2-1.\left(-1+4m\right)\)

\(\Delta'=m^2+2m3+3^2+1-4m\)

\(\Delta'=m^2+6m+9+1-4m\)

\(\Delta'=m^2+6m-4m+1+9\)

\(\Delta'=\left(m^2+2m.1+1^2\right)+9\)

\(\Delta'=\left(m+1\right)^2+9>0;\forall m\)

Vay :  với mọi m thì (đ) cắt (đ) tại 2 điểm phân biệt cùng nằm bên phải trục tung 

CHÚ Ý : NẾU BẠN LẤY \(\Delta'\)>  0   rồi tìm tham số m  ( là sai nha ) 

vì : bất kỳ m là số nào thì ( đ) cũng luôn cắt ( đ)  tại 2 điểm phân biệt bên phải trục tung 

( m không thuộc riêng về 1 giá trị nào hết nha )

OK CHÚC BẠN HỌC TỐT !!!! 

PTHHĐGĐ là:

x^2-2x-m^2+2m=0

Δ=(-2)^2-4(-m^2+2m)

=4+4m^2+8m=(2m+2)^2

Để phương trình có hai nghiệm phân biệt thì 2m+2<>0

=>m<>-1

x1^2+2x2=3m

=>x1^2+x2(x1+x2)=3m

=>x1^2+x2^2+x1x2=3m

=>(x1+x2)^2-x1x2=3m

=>2^2-(-m^2+2m)=3m

=>4+m^2-2m-3m=0

=>m^2-5m+4=0

=>m=1 hoặc m=4

10 tháng 5 2023

sao 2x2 lại bằng x2(x1+x2) vậy ạ

28 tháng 3 2020

để (d) song song zới đường thẳng (d') 

=>\(\hept{\begin{cases}m+1=3\\-2m\ne4\end{cases}=>\hept{\begin{cases}m=2\\m\ne-2\end{cases}=>m=2}}\)

b)phương trình hoành độ giao điểm của (d) zà (P)

\(\frac{1}{2}x^2-\left(m+1\right)x+2m=0\Rightarrow x^2-2\left(m+1\right)x+4m=0\)

ta có \(\Delta=4\left(m+1\right)^2-4.4m=4\left(m^2+2m+1\right)-16m=4m^2-8m+4=4\left(m-1\right)^2\ge0\)

để d cắt P tại hai điểm phân biệt 

=>\(\Delta>0=>\left(m-1\right)^2>0=>m\ne1\)(1)

lại có \(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1x_2=4m\end{cases}}\)

để 2 hoành độ dương \(\Leftrightarrow\hept{\begin{cases}x_1+x_2>0\\x_1x_2>0\end{cases}=>\hept{\begin{cases}2\left(m+1\right)>0\\4m>0\end{cases}=>\hept{\begin{cases}m>-1\\m>0\end{cases}\Rightarrow m>0}}\left(2\right)}\)

từ 1 zà 2 => m khác 1 , m lớn hơn 0 thì (d) cắt (P) tạ điểm phân biệt có hoành độ dương

10 tháng 4 2022

a) Lập phương trình hoành độ giao điểm: 

x2 = mx + 3

<=> x2 - mx - 3 = 0

Tọa độ (P) và (d) khi m = 2:

<=> x2 - 2x - 3 = 0

<=> \(\orbr{\begin{cases}x_1=3\\x_2=-1\end{cases}}\) => \(\orbr{\begin{cases}y_1=9\\y_2=1\end{cases}}\)

Tọa độ (P) và (d): A(3; 9) và B(-1; 1)

b) Để (P) và (d) cắt nhau tại 2 điểm phân biệt <=> \(\Delta>0\)

<=> (-m)2 - 4.1(-3) > 0

<=> m2 + 12 > 0 \(\forall m\)

Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{3}{2}\)

<=> 2x2 + 2x1 = 3x1x2 

<=> 2(x2 + x1) = 3x1x2

Theo viet, ta có: \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m\\x_1x_2=\frac{c}{a}=-3\end{cases}}\)

<=> 2m = 3(-3)

<=> 2m = -9

<=> m = -9/2

b: Thay m=2 vào (d), ta được:

y=2x-2+1=2x-1

Phương trình hoành độ giao điểm là:

\(x^2=2x-1\)

=>\(x^2-2x+1=0\)

=>(x-1)^2=0

=>x-1=0

=>x=1

Thay x=1 vào (P), ta được:

\(y=1^2=1\)

Vậy: Khi m=2 thì (P) cắt (d) tại A(1;1)

b: Phương trình hoành độ giao điểm là:

\(x^2=2x-m+1\)

=>\(x^2-2x+m-1=0\)

\(\text{Δ}=\left(-2\right)^2-4\cdot1\cdot\left(m-1\right)\)

=4-4m+4

=-4m+8

Để (P) cắt (d) tại hai điểm phân biệt thì Δ>0

=>-4m+8>0

=>-4m>-8

=>m<2

Theo Vi-et, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=2\\x_1x_2=\dfrac{c}{a}=m-1\end{matrix}\right.\)

y1,y2 thỏa mãn gì vậy bạn?

a: Thay x=0 và y=-5 vào (d), ta được:

2(m+1)*0-m^2-4=-5

=>m^2+4=5

=>m=1 hoặc m=-1

b:

PTHĐGĐ là;

x^2-2(m+1)x+m^2+4=0

Δ=(2m+2)^2-4(m^2+4)

=4m^2+8m+4-4m^2-16=8m-12

Để PT có hai nghiệm phân biệt thì 8m-12>0

=>m>3/2

x1+x2=2m+2; x1x2=m^2+4

(2x1-1)(x2^2-2m*x2+m^2+3)=21

=>(2x1-1)[x2^2-x2(2m+2-2)+m^2+4-1]=21

=>(2x1-1)[x2^2+2x2-x2(x1+x2)+x1x2-1]=21

=>(2x1-1)(x2^2+2x2-x1x2-x2^2+x1x2-1]=21

=>(2x1-1)(2x2-1)=21

=>4x1x2-2(x1+x2)+1=21

=>4(m^2+4)-2(2m+2)+1=21

=>4m^2+16-4m-4-20=0

=>4m^2-4m-8=0

=>(m-2)(m+1)=0

=>m=2(nhận) hoặc m=-1(loại)