Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Hệ số góc của đường thẳng: \(a=\dfrac{y_B-y_A}{x_B-x_A}=\dfrac{4-2}{3-1}=2\)
b. Gọi hàm số có dạng \(y=ax+b\Rightarrow a=1\)
\(\Rightarrow y=x+b\)
Do đồ thị hàm số qua A nên:
\(1+b=2\Rightarrow b=1\)
Vậy hàm số có dạng: \(y=x+1\)
a) Để đồ thị hàm số \(y=ax^2\) đi qua điểm A(4;4) thì
Thay x=4 và y=4 vào hàm số \(y=ax^2\), ta được:
\(a\cdot4^2=4\)
\(\Leftrightarrow a\cdot16=4\)
hay \(a=\dfrac{1}{4}\)
a, - Thay tọa độ điểm A vào hàm số ta được : \(4^2.a=4\)
\(\Rightarrow a=\dfrac{1}{4}\)
b, Thay a vào hàm số ta được : \(y=\dfrac{1}{4}x^2\)
- Ta có đồ thì của hai hàm số :
c, - Xét phương trình hoành độ giao điểm :\(\dfrac{1}{4}x^2=-\dfrac{1}{2}x\)
\(\Leftrightarrow x^2+2x=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
Vậy hai hàm số trên cắt nhau tại hai điểm : \(\left(0;0\right);\left(-2;1\right)\)
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}3x=-2x+5\\y=3x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\end{matrix}\right.\)
Đường thẳng đi qua hai điểm A và B có dạng: y = ax + b
Thay a = 1 vào (1) ta có: b = 2 – 1 = 1
Vậy phương trình đường thẳng AB là y = x + 1