K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 5 2019

Giải bài 5 trang 105 sgk Hình học 11 | Để học tốt Toán 11

a)

+ Do ABCD là hình bình hành có tâm O- giao điểm hai đường chéo

=> O là trung điểm AC và BD( tính chất hình bình hành)

* Xét tam giác SAC có SA= SC nên tam giác SAC cân tại S

Lại có SO là đường trung tuyến nên đồng thời là đường cao: SO ⊥ AC

+ Tương tự, tam giác SBD cân tại S có SO là đường trung tuyến nên đồng thời là đường cao:

Giải bài 5 trang 105 sgk Hình học 11 | Để học tốt Toán 11

b) SO ⊥ (α) ⇒ SO ⊥ AB.

Lại có: SH ⊥ AB;

SO, SH ⊂ (SOH) và SO ∩ SH

⇒ AB ⊥ (SOH).

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

31 tháng 3 2017

Hỏi đáp Toán

a) Trong mặt phẳng (α) vì AB và CD không song song nên AB ∩ DC = E

=> E ∈ DC, mà DC ⊂ (SDC)

=> E ∈ ( SDC). Trong (SDC) đường thẳng ME cắt SD tại N

=> N ∈ ME mà ME ⊂ (MAB)

=> N ∈ ( MAB). Lại có N ∈ SD => N = SD ∩ (MAB)

b) O là giao điểm của AC và BD => O thộc AC và BD, mà AC ⊂ ( SAC)

=> O ∈( SAC), BD ⊂ (SBD) , O ∈ (SBD)

=> O là một điểm chung của (SAC) và (SBD), mặt khác S cũng là điểm chung của (SAC) và (SBD) => (SAC) ∩ (SBD) = SO

Trong mặt phẳng (AEN) gọi I = AM ∩ BN thì I thuộc AM và I thuộc BN

Mà AM ⊂ (SAC) => I ∈ (SAC), BN ⊂ ( SBD) => I ∈ (SBD). Như vậy I là điểm chung của (SAC) và (SBD) nên I thuộc giao tuyến SO của (SAC) và (SBD) tức là S, I, O thẳng hàng hay SO, AM, BN đồng quy.

31 tháng 3 2017

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 3 trang 121 sgk Hình học 11 | Để học tốt Toán 11

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Ta có:

\(SA \bot \left( {ABC{\rm{D}}} \right) \Rightarrow SA \bot CB\)

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AB \bot CB\)

\( \Rightarrow CB \bot \left( {SAB} \right)\)

\(SA \bot \left( {ABC{\rm{D}}} \right) \Rightarrow SA \bot CD\)

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AD \bot CD\)

\( \Rightarrow CD \bot \left( {SAD} \right)\)

b) Ta có:

\(\left. \begin{array}{l}CB \bot \left( {SAB} \right) \Rightarrow CB \bot AH\\AH \bot SB\end{array} \right\} \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC\)

\(\left. \begin{array}{l}CD \bot \left( {SAD} \right) \Rightarrow CD \bot AK\\AK \bot SD\end{array} \right\} \Rightarrow AK \bot \left( {SC{\rm{D}}} \right) \Rightarrow AK \bot SC\)

\( \Rightarrow SC \bot \left( {AHK} \right) \Rightarrow SC \bot HK\)

\(\begin{array}{l}\Delta SAB = \Delta SA{\rm{D}}\left( {c.g.c} \right) \Rightarrow SH = SK,SB = S{\rm{D}}\\\left. \begin{array}{l} \Rightarrow \frac{{SH}}{{SB}} = \frac{{SK}}{{S{\rm{D}}}} \Rightarrow HK\parallel B{\rm{D}}\\SA \bot \left( {ABC{\rm{D}}} \right) \Rightarrow SA \bot B{\rm{D}}\end{array} \right\} \Rightarrow SA \bot HK\end{array}\)

\(\left. \begin{array}{l}SC \bot HK\\SA \bot HK\end{array} \right\} \Rightarrow HK \bot \left( {SAC} \right) \Rightarrow HK \bot AI\)

16 tháng 5 2021

S A B C D H O K I L T

a) SA vuông góc với (ABCD) => SA vuông góc AD; hình thang ABCD vuông tại A => AD vuông góc AB

=> AD vuông góc (SAB), mà AD nằm trong (SAD) nên (SAB) vuông góc (SAD).

b) AD vuông góc (SAB), BC || AD => BC vuông góc (SAB) => B là hc vuông góc của C trên (SAB)

=> (SC,SAB) = ^CAB

\(SB=\sqrt{AS^2+AB^2}=\sqrt{2a^2+a^2}\)\(=a\sqrt{3}\)

\(\tan\widehat{CAB}=\frac{BC}{SB}=\frac{a}{a\sqrt{3}}=\frac{\sqrt{3}}{3}\)=> (SC,SAB) = ^CAB = 300.

c) T là trung điểm của AD, K thuộc ST sao cho AK vuông góc ST, BT cắt AC tại O, HK cắt AO tại I, AI cắt SC tại L.

BC vuông góc (SAB) => BC vuông góc AH, vì AH vuông góc SB nên AH vuông góc SC. Tương tự AK vuông góc SC

=> SC vuông góc (HAK) => SC vuông góc AI,AL. Lập luận tương tự thì AL,AI vuông góc (SCD).

Dễ thấy \(\Delta\)SAB = \(\Delta\)SAT, chúng có đường cao tương ứng AH và AK => \(\frac{HS}{HB}=\frac{KS}{KT}\)=> HK || BT || CD

=> d(H,SCD) = d(I,SCD) = IL (vì A,I,L vuông góc (SCD)) = \(\frac{IL}{AL}.AL=\frac{CO}{CA}.\frac{SI}{SO}.AL=\frac{1}{2}.\frac{SH}{SB}.\frac{AS.AC}{\sqrt{AS^2+AC^2}}\)

\(=\frac{1}{2}.\frac{SA^2}{SA^2+SB^2}.\frac{AS.AC}{\sqrt{AS^2+AC^2}}=\frac{1}{2}.\frac{2a^2}{2a^2+a^2}.\frac{a\sqrt{2}.a\sqrt{2}}{\sqrt{2a^2+2a^2}}=\frac{a}{3}\)

17 tháng 5 2021

undefined

undefined

 

 


 

 

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc