Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
- △ ABC đồng dạng △ HBA
Hai tam giác vuông có góc nhọn ở đỉnh B chung
- △ ABC đồng dạng △ HAC
Hai tam giác vuông có góc nhọn ở đỉnh C chung
- △ ABC đồng dạng △ NMC
Hai tam giác vuông có góc nhọn ở đỉnh C chung
- △ HAC đồng dạng △ NMC
Hai tam giác vuông có góc nhọn ở đỉnh C chung
- △ HAC đồng dạng △ HBA
Hai tam giác vuông có góc nhọn ∠ (HBA) = ∠ (HAC)
- △ HAB đồng dạng △ NCM
Hai tam giác vuông có góc nhọn ∠ (HAB) = ∠ (NCM)
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc ABC chung
=>ΔABC đồng dạng với ΔHBA
Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
ΔABC đồng dạng với ΔHAC
ΔABC đồng dạng với ΔHBA
=>ΔHAC đồng dạng với ΔHBA
b: ΔAHB vuông tại H có HI là đường cao
nên AI*AB=AH^2
ΔAHC vuông tại H có HK là đường cao
nên AK*AC=AH^2
=>AI*AB=AK*AC
Các cặp tam giác đồng dạng với nhau theo thứ tự các đỉnh tương ứng và viết tỉ lệ thức giữa các cặp cạnh tương ứng của chúng:
- △ ABC đồng dạng △ HBA. Ta có:
- △ ABC đồng dạng △ HAC. Ta có:
- △ ABC đồngdạng △ KHC. Ta có:
- △ ABC đồng dạng △ KAH. Ta có:
- △ HBA đồng dạng △ HAC. Ta có:
- △ HBA đồng dạng △ KHC. Ta có:
- △ HBA đồng dạng △ KAH. Ta có:
- △ HAC đồng dạng △ KHC.Ta có:
- △ HAC đồng dạng △ KAH. Ta có:
- △ KHC đồngdạng △ KAH. Ta có:
Trong hình bên có 3 cặp tam giác đồng dạng là BHA và BAC; CHA và CAB; HAB và HCA.
Theo giả thiết D, E, F lần lượt là trung điểm các cạnh AB, BC và CA nên DE, EF, FD là các đường trung bình của tam giác ABC. Do đó, ta có:
DE = 1/2 AC,EF = 1/2 AB,FD = 1/2 BC (1)
Mặt khác, M là trung điểm của OA, P là trung điểm của OB, Q là trung điểm của OC, xét các tam giác OAB, OBC, OCA, ta cũng có:
MP = 1/2 AB,PQ = 1/2 BC, QM = 1/2 AC. (2)
Từ đẳng thức (1) và (2), ta suy ra :
DE = QM, EF = MP, FD = PQ.
Do đó ta có:
Vậy △ DEF đồng dạng △ QMP theo tỉ số đồng dạng k = 1, trong đó D, E, F lần lượt tương ứng với các đỉnh Q, M, P.
∆ADC ∽ ∆ABE vì góc A chung và \(\widehat{D}\)= \(\widehat{B}\) = 900
∆DEF ∆BCF vì \(\widehat{D}\) = \(\widehat{B}\) = 900 , \(\widehat{DEF}=\widehat{BFC}\)
∆DFE ∆BAE vì ( \(\widehat{D}=\widehat{B}\) = 900 , góc A chung)
∆BFC ∆DAC vì (\(\widehat{D}=\widehat{B}\) = 900, góc C chung)