Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: CD là phân giác
=>BD/DA=BC/CA
=>4/DA=5/6
=>DA=4:5/6=24/5=4,8cm
b: HE//CI
=>HE/CI=AH/AC
HD//BC
=>HD/BC=AH/AC
=>HE/CI=HD/BC
mà CI=BC
nên HE=HD
=>H là trung điểm của ED
c: AE/EI=AH/HC
AC/CI=AC/CB=AD/DB
=>AE/EI=AC/CI
a) Gọi P và Q lần lượt là giao điểm của AE, AF với CD.
Chứng minh tương tự 2B.
b) Ta có:
M N = 1 2 ( A B + C D ) = 1 2 ( a + c )
Lại có:
c = CD = CQ + QD = BC + QD = b + QD (do tam giác BCQ cân) Þ QD = c - b.
Trong hình thang ABQD có M là trung điểm của AD và MF//DQ nên chứng minh được F là trung điểm của BQ, từ đó chứng minh MF là đường trung bình của hình thang ABQD.
Vì MF là đường trung bình của hình thang ABQD.
Þ M F = 1 2 ( A B + D Q ) = 1 2 ( a + c − b )
Mặt khác, FN là đường trung bình của tam giác BCQ, tức là F N = 1 2 C Q = 1 2 b .
Vì AC//CD =>\(\dfrac{OA}{AB}=\dfrac{OC}{CD}\Leftrightarrow\dfrac{2}{3}=\dfrac{3}{CD}\Leftrightarrow CD=\dfrac{3.3}{2}=4,5cm\)