Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
Hai tia OB, OC cùng nửa mặt phẳng bờ chứa tia OA mà
< nên tia OC nằm giữa hai tia OA,OB
suy ra + =
hay 550 + = 1450
Vậy = 1450 - 550 = 900
a, vì trên cùng nửa mặt phẳng bờ chứa tia oa có tia AOB = \(70^0\) <AOC =\(140^0\)
=> tia OB nằm giữa tia OC và OA
b, ta có BOA + BOC =COA
\(70^0\)+BOC =\(140^0\)
BOC = \(140^0-70^0\)
BOC = \(70^0\)
Vậy BOC = \(70^0\)
c, vì BOC =BOA =\(\frac{COA}{2}\)( =\(70^0\))
=>Tia OB là tia phân giác góc COA
a/Trên nửa mặt phẳng bờ chứa tia OA,ta có góc AOB= 70 độ < góc AOC= 140 độ
Vậy tia OB nằm giữa 2 tia OC và OA
b/Vì tia OB nằm giữa hai tia OC và OA nên
Ta có: góc AOB+góc BOC = góc AOC
Thay số: 70 độ + góc BOC =140 độ
Suy ra góc BOC = 140 độ - 70 độ = 70 độ
Vậy góc BOC = 70 độ
c/Tia OB là tia phân giác của góc AOC vì
+Tia OB nằm giữa hai tia OA và OC ( theo a)
+góc AOB = góc BOC = 70 độ (theo b)
d/Vì góc DOB là góc bẹt nên góc DOB = 180 độ
Giải chi tiết:
a) Trên cùng một nửa mặt phẳng bờ chứa tia OaOa, ta có ˆaOb<ˆaOc(600<1200)aOb^<aOc^(600<1200)nên ObOb là tia nằm giữa hai tia OaOa và OcOc
⇒ˆaOb+ˆbOc=ˆaOc⇒ˆbOc=ˆaOc−ˆaOb=1200−600=600⇒aOb^+bOc^=aOc^⇒bOc^=aOc^−aOb^=1200−600=600.
b) Theo chứng minh trên ta có tia ObOb là tia nằm giữa hai tia OaOa và OcOc.
Lại có ˆaOb=ˆaOc=600aOb^=aOc^=600
Suy ra ObOb là tia phân giác của ˆaOcaOc^.
c) Vì tia OtOt là tia đối của tia OaOa nên góc aOtaOt là góc bẹt, hay ˆaOt=1800aOt^=1800.
Trên cùng một nửa mặt phẳng bờ chứa tia OaOa, ta có ˆaOc<ˆaOt(1200<1800)aOc^<aOt^(1200<1800)nên OcOc là tia nằm giữa hai tia OaOa và OtOt
⇒ˆaOc+ˆcOt=ˆaOt⇒ˆcOt=ˆaOt−ˆaOc=1800−1200=600⇒aOc^+cOt^=aOt^⇒cOt^=aOt^−aOc^=1800−1200=600.
Vì OmOm là tia phân giác của ˆcOtcOt^ nên ˆcOm=12ˆcOt=6002=300cOm^=12cOt^=6002=300.
Ta có ˆbOc+ˆcOm=600+300=900bOc^+cOm^=600+300=900, do đó ˆbOcbOc^ và ˆcOmcOm^ là hai góc phụ nhau.
Chọn D
a) Trên cùng một nửa mặt phẳng bờ chứa tia
O
a
, ta có
ˆ
a
O
b
<
ˆ
a
O
c
(
60
0
<
120
0
)
nên
O
b
là tia nằm giữa hai tia
O
a
và
O
c
⇒
ˆ
a
O
b
+
ˆ
b
O
c
=
ˆ
a
O
c
⇒
ˆ
b
O
c
=
ˆ
a
O
c
−
ˆ
a
O
b
=
120
0
−
60
0
=
60
0
.
b) Theo chứng minh trên ta có tia
O
b
là tia nằm giữa hai tia
O
a
và
O
c
.
Lại có
ˆ
a
O
b
=
ˆ
a
O
c
=
60
0
Suy ra
O
b
là tia phân giác của
ˆ
a
O
c
.
c) Vì tia
O
t
là tia đối của tia
O
a
nên góc
a
O
t
là góc bẹt, hay
ˆ
a
O
t
=
180
0
.
Trên cùng một nửa mặt phẳng bờ chứa tia
O
a
, ta có
ˆ
a
O
c
<
ˆ
a
O
t
(
120
0
<
180
0
)
nên
O
c
là tia nằm giữa hai tia
O
a
và
O
t
⇒
ˆ
a
O
c
+
ˆ
c
O
t
=
ˆ
a
O
t
⇒
ˆ
c
O
t
=
ˆ
a
O
t
−
ˆ
a
O
c
=
180
0
−
120
0
=
60
0
.
Vì
O
m
là tia phân giác của
ˆ
c
O
t
nên
ˆ
c
O
m
=
1
2
ˆ
c
O
t
=
60
0
2
=
30
0
.
Ta có
ˆ
b
O
c
+
ˆ
c
O
m
=
60
0
+
30
0
=
90
0
, do đó
ˆ
b
O
c
và
ˆ
c
O
m
là hai góc phụ nhau.
Đáp án là A