Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét. Sau mỗi lần thực hiện trò chơi thì trên bảng giảm đi một số (xóa 2 số cũ và viết thêm 1 số mới). Sau 9 lần thì trên bảng còn đúng 1 số. Thử chơi: xóa cặp số 9, 10 và thay bằng hiệu 1. Tương tự như các cặp số 1, 2 hoặc 3, 4 hoặc 5, 6 hoặc 7, 8 thì sau 5 lần thực hiện trò chơi, trên bảng còn lại 5 số 1. Thử tiếp 2 lần cặp 1, 1 ta còn 3 số trên bảng là 0, 0, 1. Sau 2 lần chơi nữa ta được số còn lại là 1, khác 0. Vậy bất biến ở đây là gì?
Giải. Tổng 10 số ban đầu là S = 1 + 2 +... + 10 = 55.
Mỗi lần chơi xóa đi hai số a và b bất kỳ rồi viết lên bảng số a - b, ta thấy a + b = (a - b) + 2b. Nghĩa là số mới viết bé hơn tổng hai số vừa xóa là 2b, là một số chẵn. Tức là sau mỗi lần chơi, tổng các số trên bảng luôn là số lẻ. Vậy số cuối cùng cũng là số lẻ.
Chúc bạn học tốt!
+ Nếu xóa đi 2 số chẵn, thì tổng của 2 số bị số sẽ là một số chẵn. Suy ra sau khi thực hiện số các số lẻ trên bảng không thay đổi.
+ Nếu xóa đi 1 số chẵn và 1 số lẻ, thì tổng của 2 số bị số sẽ là một số lẻ. Suy ra sau khi thực hiện số các số lẻ trên bảng không thay đổi.
+ Nếu xóa đi 2 số lẻ, thì tổng của 2 số bị số sẽ là một số chẵn. Suy ra sau khi thực hiện số các số lẻ trên bảng giảm đi 2 số.
+ Theo giả thiết số các số lẻ là 5, nên sau mỗi lần thực hiện trên bảng luôn còn có số lẻ.
+ Sau mỗi lần thực hiện, số các số trên bảng giảm đi 1. Vậy sau lần thực hiện thứ 9 thì trên bảng còn lại duy nhất một số và "Số đó là số lẻ" (là tổng của 10 số đã cho).
+ Nếu xóa đi 2 số chẵn, thì tổng của 2 số bị số sẽ là một số chẵn. Suy ra sau khi thực hiện số các số lẻ trên bảng không thay đổi.
+ Nếu xóa đi 1 số chẵn và 1 số lẻ, thì tổng của 2 số bị số sẽ là một số lẻ. Suy ra sau khi thực hiện số các số lẻ trên bảng không thay đổi.
+ Nếu xóa đi 2 số lẻ, thì tổng của 2 số bị số sẽ là một số chẵn. Suy ra sau khi thực hiện số các số lẻ trên bảng giảm đi 2 số.
+ Theo giả thiết số các số lẻ là 5, nên sau mỗi lần thực hiện trên bảng luôn còn có số lẻ.
+ Sau mỗi lần thực hiện, số các số trên bảng giảm đi 1. Vậy sau lần thực hiện thứ 9 thì trên bảng còn lại duy nhất một số và "Số đó là số lẻ" (là tổng của 10 số đã cho).
Chào bạn, nếu bạn đã học nguyên lí bất biến thì có thể giải theo cách sau:
Coi mỗi số chắn là 1, mỗi số lẻ là -1. Theo bài ra, ta có:
Số số lẻ là: (2009 - 1) : 2 + 1 = 1005 (số)
Số số chẵn là: (2010 - 2) : 2 + 1 = 1005 (số)
Do vậy, tích của các số mình đã coi là (-1)1005.11005 = -1
Chúng ta có 3 trường hợp:
(a) Chọn ra 2 số chẵn, suy ra sau mỗi lần thay đổi, số số chẵn giảm đi 1
Vậy tích lúc đó là -1 (không thay đổi giá trị khi chia cho 1)
(b) Chọn ra 2 số lẻ, suy ra số số lẻ giảm đi 2 là số số chẵn tăng lên 1
Vậy tích lúc đó vẫn là -1
(c) Chọn ra một số lẻ một số chẵn, số số lẻ không thay đổi, số số chẵn giảm đi 1
Vậy tích lúc đó vẫn là -1
Do đó, dù có thay đổi thế nào thì tích vẫn là -1, tức là khi còn lại một số trên bảng, tích vẫn là -1.
Vì thế số cuối cùng là số lẻ.
Chúc bạn học vui!
K.K.K
Bài giải: Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.
Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a. Theo bài ra ta có phép tính:
abcd + abc + ab + a = 2003.
Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)
Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được:
1111 + bbb + cc + d = 2003.
bbb + cc + d = 2003 - 1111
bbb + cc + d = 892 (**)
b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.
Thay b = 8 vào (**) ta được:
888 + cc + d = 892
cc + d = 892 - 888
cc + d = 4
Từ đây suy ra c chỉ có thể bằng 0 và d = 4.
Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.
Thử lại: 1804 + 180 + 18 + 1 = 2003 (đúng)
6
Bài giải: Số táo người đó mang ra chợ là:
20 + 25 + 30 + 35 + 40 = 150 (quả)
Vì số táo loại 2 còn lại đúng bằng nửa số táo loại 1 nên sau khi bán, số táo còn lại phải chia hết cho 3.
Vì tổng số táo mang ra chợ là 150 quả chia hết cho 3 nên số táo đã bán phải chia hết cho 3. Trong các số 20, 25, 30, 35, 40 chỉ có 30 chia hết cho 3. Do vậy người ấy đã bán giỏ táo đựng 30 quả.
Tổng số táo còn lại là:
150 - 30 = 120 (quả)
Ta có sơ đồ biểu diễn số táo của loại 1 và loại 2 còn lại:
Số táo loại 2 còn lại là:
120 : (2 + 1) = 40 (quả)
Vậy người ấy còn lại giỏ đựng 40 quả chính là số táo loại 2 còn lại.
Đáp số: 40 quả
Bài 57: Không được thay đổi vị trí của các chữ số đã viết trên bảng: 8 7 6 5 4 3 2 1 mà chỉ được viết thêm các dấu cộng (+), bạn có thể cho được kết quả của dãy phép tính là 90 được không?
Bài giải: Có hai cách điền:
8 + 7 + 65 + 4 + 3 + 2 + 1 = 90
8 + 7 + 6 + 5 + 43 + 21 = 90
Để tìm được hai cách điền này ta có thể có nhận xét sau:
Tổng 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36 ; 90 - 36 = 54.
Như vậy muốn có tổng 90 thì trong các số hạng phải có một hoặc hai số là số có hai chữ số. Nếu số có hai chữ số đó là 87 hoặc 76 mà 87 > 54, 76 > 54 nên không thể được. Nếu số có hai chữ số là 65; 65 + 36 - 6 - 5 = 90, ta có thể điền:
8 + 7 + 65 + 4 + 3 + 2 + 1 - 90.
Nếu số có hai chữ số là 54 thì cũng không thể có tổng là 90 được vì 54 + 36 - 5 - 4 < 90
Nếu số có hai chữ số là 43 ; 43 < 54 nên cũng không thể được. Nếu trong tổng có 2 số có hai chữ số là 43 và 21 thì ta có 43 + 21 - (4 + 3 + 2 + 1) = 54. Như vậy ta có thể điền:
8 + 7 + 6 + 5 + 43 + 21 = 90.
Bài 1
Bài giải: Số thứ nhất không thể nhiều hơn 4 chữ số vì tổng 4 số bằng 2003. Nếu số thứ nhất có ít hơn 4 chữ số thì sẽ không tồn tại số thứ tư. Vậy số thứ nhất phải có 4 chữ số.
Gọi số thứ nhất là abcd (a > 0, a, b, c, d < 10). Số thứ hai, số thứ ba, số thứ tư lần lượt sẽ là : abc ; ab ; a. Theo bài ra ta có phép tính:
abcd + abc + ab + a = 2003.
Theo phân tích cấu tạo số ta có : aaaa + bbb + cc + d = 2003 (*)
Từ phép tính (*) ta có a < 2, nên a = 1. Thay a = 1 vào (*) ta được:
1111 + bbb + cc + d = 2003.
bbb + cc + d = 2003 - 1111
bbb + cc + d = 892 (**)
b > 7 vì nếu b nhỏ hơn hoặc bằng 7 thì bbb + cc + d nhỏ hơn 892 ; b < 9 vì nếu b = 9 thì bbb = 999 > 892. Suy ra b chỉ có thể bằng 8.
Thay b = 8 vào (**) ta được:
888 + cc + d = 892
cc + d = 892 - 888
cc + d = 4
Từ đây suy ra c chỉ có thể bằng 0 và d = 4.
Vậy số thứ nhất là 1804, số thứ hai là 180, số thứ ba là 18 và số thứ tư là 1.
Thử lại: 1804 + 180 + 18 + 1 = 2003 (đúng)
Bài 2
Bài giải: Số táo người đó mang ra chợ là:
20 + 25 + 30 + 35 + 40 = 150 (quả)
Vì số táo loại 2 còn lại đúng bằng nửa số táo loại 1 nên sau khi bán, số táo còn lại phải chia hết cho 3.
Vì tổng số táo mang ra chợ là 150 quả chia hết cho 3 nên số táo đã bán phải chia hết cho 3. Trong các số 20, 25, 30, 35, 40 chỉ có 30 chia hết cho 3. Do vậy người ấy đã bán giỏ táo đựng 30 quả.
Tổng số táo còn lại là:
150 - 30 = 120 (quả)
Ta có sơ đồ biểu diễn số táo của loại 1 và loại 2 còn lại:
Số táo loại 2 còn lại là:
120 : (2 + 1) = 40 (quả)
Vậy người ấy còn lại giỏ đựng 40 quả chính là số táo loại 2 còn lại.
Đáp số: 40 quả
Bài 3
Bài giải: Có hai cách điền:
8 + 7 + 65 + 4 + 3 + 2 + 1 = 90
8 + 7 + 6 + 5 + 43 + 21 = 90
Để tìm được hai cách điền này ta có thể có nhận xét sau:
Tổng 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36 ; 90 - 36 = 54.
Như vậy muốn có tổng 90 thì trong các số hạng phải có một hoặc hai số là số có hai chữ số. Nếu số có hai chữ số đó là 87 hoặc 76 mà 87 > 54, 76 > 54 nên không thể được. Nếu số có hai chữ số là 65; 65 + 36 - 6 - 5 = 90, ta có thể điền:
8 + 7 + 65 + 4 + 3 + 2 + 1 - 90.
Nếu số có hai chữ số là 54 thì cũng không thể có tổng là 90 được vì 54 + 36 - 5 - 4 < 90
Nếu số có hai chữ số là 43 ; 43 < 54 nên cũng không thể được. Nếu trong tổng có 2 số có hai chữ số là 43 và 21 thì ta có 43 + 21 - (4 + 3 + 2 + 1) = 54. Như vậy ta có thể điền:
8 + 7 + 6 + 5 + 43 + 21 = 90.
Bài 3
ài giải: Có hai cách điền:
8 + 7 + 65 + 4 + 3 + 2 + 1 = 90
8 + 7 + 6 + 5 + 43 + 21 = 90
Để tìm được hai cách điền này ta có thể có nhận xét sau:
Tổng 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 36 ; 90 - 36 = 54.
Như vậy muốn có tổng 90 thì trong các số hạng phải có một hoặc hai số là số có hai chữ số. Nếu số có hai chữ số đó là 87 hoặc 76 mà 87 > 54, 76 > 54 nên không thể được. Nếu số có hai chữ số là 65; 65 + 36 - 6 - 5 = 90, ta có thể điền:
8 + 7 + 65 + 4 + 3 + 2 + 1 - 90.
Nếu số có hai chữ số là 54 thì cũng không thể có tổng là 90 được vì 54 + 36 - 5 - 4 < 90
Nếu số có hai chữ số là 43 ; 43 < 54 nên cũng không thể được. Nếu trong tổng có 2 số có hai chữ số là 43 và 21 thì ta có 43 + 21 - (4 + 3 + 2 + 1) = 54. Như vậy ta có thể điền:
8 + 7 + 6 + 5 + 43 + 21 = 90.