K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Các cạnh kề của \(BD\) là: \(BQ\), \(DN\)

Cạnh đối của cạnh \(BD\) là: \(NQ\)

b) Các đường chéo của tứ giác là: \(BN;\;DQ\)

20 tháng 7 2018
Bài 3 mình làm được rồi, có phải bằng 10cm ko vậy ạ?

ĐỈnh: C, H, R, L

Đường chéo: CR, HL

Cạnh: CH, HR, RL, CL

11 tháng 9 2018

a) Hai đỉnh kề nhau: A và B, B và C, C và D, D và A

Hai đỉnh đối nhau: A và C, B và D

b) Đường chéo (đoạn thẳng nối hai đỉnh đối nhau): AC, BD

c) Hai cạnh kề nhau: AB và BC, BC và CD, CD và DA, DA và AB

Hai cạnh đối nhau: AB và CD, AD và BC

d) Góc: ∠A , ∠B , ∠C , ∠D

Hai góc đối nhau: ∠A và ∠C , ∠B và ∠D

e) Điểm nằm trong tứ giác (điểm trong của tứ giác): M, P

Điểm nằm ngoài tứ giác (điểm ngoài của tứ giác): N, Q

23 tháng 4 2016

Giúp mình zớ

i

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Lời giải:

Gọi hình thoi là $ABCD$ có $AC=12, BD=8$ (cm)

Trung điểm của $AB,AD,CD,CB$ lần lượt là $M,N,P,Q$

Dễ thấy:

$MQ, NP\parallel AC$ và $MQ=NP=\frac{AC}{2}=6$ (cm)

$NM, QP\parallel BD$ và $MN=QP=\frac{BD}{2}=4$ (cm)

Mà $BD\perp AC$ (tính chất hình thoi)

$\Rightarrow (MQ\parallel NP)\perp (MN\parallel QP)$

$\Rightarrow MNPQ$ là hình chữ nhật

$S_{MNPQ}=MN.NP=4.6=24$ (cm2)

 

AH
Akai Haruma
Giáo viên
22 tháng 5 2021

Hình vẽ:

26 tháng 9 2019

Tương tự bài 3A

15 tháng 10 2021

a: Xét ΔABC có

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC và \(MN=\dfrac{AC}{2}\)(1)

Xét ΔCDA có 

P là trung điểm của CD

Q là trung điểm của DA

Do đó: PQ là đường trung bình của ΔCDA

Suy ra: PQ//AC và \(PQ=\dfrac{AC}{2}\left(2\right)\)

Từ (1) và (2)suy ra MN//PQ và MN=PQ

hay MNPQ là hình bình hành

24 tháng 8 2022

a) QQ là trung điểm của ADAD

MM là trung điểm của ABAB

⇒QM⇒QM là đường trung bình của ΔABDΔABD

⇒QM∥=12BD⇒QM∥=12BD (1)

Tương tự PNPN là đường trung bình của ΔBCDΔBCD

⇒PN∥=12BD⇒PN∥=12BD (2)

Từ (1) và (2) suy ra QM∥=PN(∥=12BD)QM∥=PN(∥=12BD)

⇒⇒ tứ giác MNPQMNPQ là hình bình hành.

 

Ta có: QQ là trung điểm của ADAD

JJ là trung điểm của ACAC

⇒QJ⇒QJ là đường trung bình của ΔACDΔACD

⇒QJ∥=12CD⇒QJ∥=12CD (1)

Tương tự KNKN là đường trung bình của ΔBCDΔBCD

⇒KN∥=12CD⇒KN∥=12CD (2)

Từ (1) và (2) suy ra QJ∥=KN(∥=12CD)QJ∥=KN(∥=12CD)

⇒⇒ tứ giác JNKQJNKQ là hình bình hành.

 

b) Tứ giác MNPQMNPQ là hình bình hành

⇒ Gọi MP∩QN=O⇒ Gọi MP∩QN=O

⇒O⇒O là trung điểm của MPMP và QNQN

Tứ giác INKQINKQ là hình bình hành

Có hai đường chéo là QNQN và KJKJ

OO là trung điểm của QNQN

⇒O⇒O là trung điểm của KJKJ

⇒MP,NQ,JK⇒MP,NQ,JK đồng quy tại OO trung điểm của mỗi đường.