Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Quá lực!!!)
Đầu tiên, hãy CM tam giác \(EAH\) và \(ABD\) đồng dạng.
Từ đó suy ra \(\frac{EA}{AB}=\frac{AH}{BD}\) hay \(\frac{EA}{OB}=\frac{AC}{BD}\).
Từ đây CM được tam giác \(EAC\) và \(OBD\) đồng dạng.
Suy ra \(\widehat{ECA}=\widehat{ODB}\). Do đó nếu gọi \(OD\) cắt \(EC\) tại \(L\) thì CM được \(OD⊥EC\).
-----
Đường tròn đường kính \(NC\) cắt \(EC\) tại \(F\) nghĩa là \(NF⊥EC\), hay \(NF\) song song với \(OD\).
Vậy \(NF\) chính là đường trung bình của tam giác \(AOD\), vậy \(NF\) qua trung điểm \(AO\) (là một điểm cố định) (đpcm)
a: góc AMB=góc ACB=90 độ
=>BM vuông góc DA và AC vuông góc DB
góc DMH+góc DCH=90+90=180 độ
=>DMHC nội tiếp
Xét ΔHMA vuông tại M và ΔHCB vuông tại C có
góc MHA=góc CHB
=>ΔHMA đồng dạng với ΔHCB
=>HM/HC=HA/HB
=>HM*HB=HA*HC
b: góc DBM=góc CBM=1/2*sđ cung CM
góc MBA=1/2*sđ cung MA
mà sđ cung CM=sđ cung MA
nên góc DBM=góc ABM
=>BM là phân giác của góc DBA
Xét ΔBDA có
BM vừa là đường cao, vừa là phân giác
=>ΔBDA cân tại B
d: Xét ΔMAK vuông tại M và ΔMDH vuông tại M có
MA=MD
góc MAK=góc MDH
=>ΔMAK=ΔMDH
=>MK=MH
Xét tứ giác AKDH có
M là trung điểm chung của AD và KH
AD vuông góc KH
=>AKDH là hình thoi