Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^2+2y^2-2xy+4y+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}x-y=0\\y+2=0\end{cases}}\Leftrightarrow x=y=-2\)
Vậy \(x+y=-2-2=-4\)
\(x^2+2y^2-2xy+4y+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y+2\right)^2=0\)
Dễ thấy: \(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0\\\left(y+2\right)^2\ge0\end{matrix}\right.\)
\(\Rightarrow\left(x-y\right)^2+\left(y+2\right)^2\ge0\)
Xảy ra khi \(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=-2\\y=-2\end{matrix}\right.\)
\(x^2+y^2+4=2xy+4x+4y\)
\(\Leftrightarrow x^2-\left(2y+4\right)x+y^2-4y+4=0\)
Xét phương trình theo nghiệm x.
\(\Rightarrow\Delta'=\left(y+2\right)^2-\left(y^2-4y+4\right)=8y\)
\(\Rightarrow\orbr{\begin{cases}x=y+2-2\sqrt{2y}\\x=y+2+2\sqrt{2y}\end{cases}}\)
Vì x, y nguyên dương nên
\(\Rightarrow\sqrt{2y}=a\)
\(\Rightarrow y=2n^2\)
\(\Rightarrow\orbr{\begin{cases}x=2n^2+2-4n\\x=2n^2+2+4n\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2\left(n-1\right)^2\\x=2\left(n+1\right)^2\end{cases}}\)
Vậy \(\frac{y}{2};\frac{x}{2}\)là 2 số chính phương.
\(x^2-2xy+y^2+y^2+4y+4=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y+2\right)^2=0\)
\(\left\{{}\begin{matrix}x=y\\y=-2\end{matrix}\right.\)
Vậy : x+y=-4