Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
Số số hang của tổng S là :(2n-1-1):2+1=n (số hạng)
Vậy tổng S bằng:(n/2)x(2n-1+1)=nxn=n2
Vậy tổng S là bình phương của số n
\(A=1+3+....+\left(2n+1\right)=\frac{\left(2n+2\right)\left(n+1\right)}{2}=\left(n+1\right)^2\)
A = 1 + 3 + 5 + 7 + ... + 2n + 1
= \(\left[\left(2n+1-1\right):2+1\right].\left(\frac{2n+1+1}{2}\right)\)
= \(\left(n+1\right).\left(n+1\right)\)
= \(\left(n+1\right)^2\)
=> A là số chính phương (đpcm)
b) \(2+4+6+...+2n\)
= \(\left[\left(2n-2\right):2+1\right].\frac{2n+2}{2}\)
= \(n.\left(n+1\right)\)
= \(n^2+n\)
\(\Rightarrow\)B không là số chính phương
a, Số các số hạng của S2 là:
[(2n-1)-1]:2=n-1
S2=(2n-1)+1.(n-1)/2=n.(n-1)
Do đó S2 là tổng bình phương của số: n2-n
Số các số hạng của S1 là:
(199-1):2=99
S1=(199+1).99/2=992
Vậy S1 là tổng bình phương của số: 992
bà tích tui tui cho lên hoc24.vn cho