K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2016

mk xin lỗi thiếu =4

 

 

3 tháng 1 2016

mình làm đáp án là 1 

violimpic vòng 10

28 tháng 12 2015

Số a=1 ; b=2 vậy tổng bag 3

12 tháng 7 2016

a=1 ;b=2 tong a+b =3

8 tháng 1 2016

Ta có: 4 = 0 + 4 = 1 + 3 = 2 + 2 mà (a+1)^2, (b-1)^2 phải khác 2 và 3. do a, b là số tự nhiên

Vậy ta có:

(a+1)^204
a-11
(b-1)^240
b31

vậy (a+1)^2 + (b-1)^2 = 0 + 4 = 4 khi a + b = 1 + 1 = 2

      (a+1)^2 + (b-1)^2 = 4 + 0 = 4 khi a + b = -1 + 3 = 2

1 tháng 1 2016

trong violympic chắc lun

2 tháng 3 2020

Ta có : \(2008a^2+a=2009b^2+b\)

\(\Leftrightarrow2008\left(a^2-b^2\right)+\left(a-b\right)=b^2\)

\(\Leftrightarrow\left(a-b\right)\left(2008b+2008b+1\right)=b^2\) (1)

Mặt khác : \(2008a^2+a=2009b^2+b\)

\(\Leftrightarrow2009a^2-2009b^2+\left(a-b\right)=a^2\)

\(\Leftrightarrow2009\left(a-b\right)\left(a+b\right)+\left(a-b\right)=a^2\)

\(\Leftrightarrow\left(a-b\right)\left(2009a+2009b+1\right)=a^2\) (2)

Từ (1) và (2) 

\(\Rightarrow\left(a-b\right)^2\left(2008a+2008b+1\right)\left(2009a+2009b+1\right)=\left(ab\right)^2\) (*)

Nếu : \(a=b\) thì từ (*)

\(\Rightarrow\hept{\begin{cases}a-b=0\\2008+2008b+1=1\end{cases}}\) đều là số chính phương

Nếu \(a\ne b\) thì từ (*) \(\Rightarrow2008a+2008b+1,2009a+2009b+1\) là số chính phương

Gọi \(\left(2008a+2008b+1,2009a+2009b+1\right)=d\left(d\inℕ^∗\right)\)

\(\Rightarrow\hept{\begin{cases}2008a+2008b+1⋮d\\2009a+2009b+1⋮d\end{cases}}\)  \(\Rightarrow\hept{\begin{cases}a+b⋮d\\2009\left(a+b\right)+1⋮d\end{cases}}\)

\(\Rightarrow1⋮d\Rightarrow d=1\left(d\inℕ^∗\right)\)

\(\Rightarrow\left(2008a+2008b+1,2009a+2009b+1\right)=1\)

mà : \(2008a+2008b+1,2009a+2009b+1\) là số chính phương

\(\Rightarrow2008a+2008b+1,2009a+2009b+1\) đồng thời là số chính phương

Nên từ (1) \(\Rightarrow a-b\) là số chính phương.

Vậy : bài toán được chứng minh .