Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+) Thay x = 5 vào phương trình 2 x − 3 = x + 2 x − 4 ta được
2.5 − 3 = 5 + 2 5 − 4 ⇔ 7 = 7 1 = 7
Vậy 5 là nghiệm của phương trình 2 x − 3 = x + 2 x − 4 khẳng định (I) đúng.
+) Tập nghiệm của phương trình 7 – x = 2x – 8 là x = 5 là khẳng định sai vì kết luận x = 5 không phải là tập nghiệm.
+) Ta có: 10 - 2x = 0 ⇔ 2x = 10 ⇔ x = 5
Vậy tập nghiệm của phương trình là S = {5}.
Do đó khẳng định (III) là đúng.
Vậy có hai mệnh đề đúng.
Đáp án cần chọn là: C
Thay x = 3 lần lượt vào từng vế của mỗi bất phương trình, ta được:
a) 2x + 3 = 2.3 + 3 = 9
Vậy x = 3 không là nghiệm của bất phương trình 2x + 3 < 9.
b) -4x = -4.3 = -12
2x + 5 = 2.3 + 5 = 11
-12 < 11 nên x = 3 không phải nghiệm của bất phương trình -4x > 2x + 5.
c) 5 – x = 5 – 3 = 2
3x – 12 = 3.3 – 12 = -3.
Vì 2 > -3 nên x = 3 là nghiệm của bất phương trình 5 – x > 3x – 12.
a, +) Thay y = -2 vào phương trình trên ta có :
( -2 + 1 )2 = 2 . ( -2 ) + 5
1 = 1
Vậy y = -2 thỏa mãn phương trình trên
+) Thay y = 1 vào phương trình trên , ta có :
( 1 + 1)2 = 2 . 1 + 5
4 = 7
Vậy y = 1 thỏa mãn phương trình trên
b, +) Thay x =-3 vaò phương trình trên , ta có :
( -3 + 2 )2 = 4 . ( -3 ) + 5
2 = -7
Vậy x = -3 không thỏa mãn phuong trình trên
+) Thay x = 1 vào phương trình trên , ta có :
( 1 + 2 )2 = 4 . 1 + 5
9 = 9
Vậy x = 1 thỏa mãn phương trình trên
c, +) Thay t = -1 vào phương trình , ta có :
[ 2 . ( -1 ) + 1 ]2 = 4 . ( -1 ) + 5
1 = 1
Vậy t = -1 thỏa mãn phương trình trên
+) Thay t = 3 vào phương trình trên , ta có :
( 2 . 3 + 1 )2 = 4 . 3 + 5
49 = 17
Vậy t = 3 không thỏa mãn phương trình trên
d, +) Thay z = -2 vào phương trình trên , ta có :
( -2 + 3 )2 = 6 . ( -2 ) + 10
1 = -2
Vậy z = -2 không thỏa mãn phương trình trên
+) Thay z = 1 vào phương trình trên , ta có :
( 1 + 3 )2 = 6 . 1 + 10
16 = 16
Vậy z =1 thỏa mãn phương trình trên
`(-x-5)(-3x-3)=0`
`<=>` $\left[ \begin{array}{l}-x-5=0\\-3x-3=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}-x=5\\-3x=-3\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=-5\\x=-1\end{array} \right.$
Vậy `S={-5,-1}`
2 và 8