K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2016

pt<=> \(2x\sqrt{3-2x}=6x^2-12x+8\)

 <=>\(6x^2-12x+8-2x\sqrt{3-2x}=0\)

<=> \(x^2-2x\sqrt{3-2x}+3-2x+5x^2-10x+5=0\)

<=> \(\left(x-\sqrt{3-2x}\right)^2+5\left(x-1\right)^2=0\)

 đến đây cậu tự giải nha 

6 tháng 3 2016

okie okie ^^ camon cậu Tuấn Anh ^^

5 tháng 4 2019

Mik cần gấp vì chj nay phải đi hok.

18 tháng 2 2017

\(x\sqrt{3-2x}=3x^2-6x+4\left(ĐK:x\le\frac{3}{2}\right)\)

\(\Leftrightarrow2x\sqrt{3-2x}=6x^2-12x+8\)

\(\Leftrightarrow\left(x^2-2x\sqrt{3-2x}+3-2x\right)+\left(5x^2-10x+5\right)=0\)

\(\Leftrightarrow\left(x-\sqrt{3-2x}\right)^2+5\left(x-1\right)^2=0\)

\(\Leftrightarrow\left\{\begin{matrix}x-\sqrt{3-2x}=0\\x-1=0\end{matrix}\right.\Rightarrow x=1\left(tm\right)\)

18 tháng 2 2017

thanks nhiều

28 tháng 4 2021

1. Với m = -1 

Phương trình đã cho trở thành x2 + 2x - 3 = 0

Dễ thấy phương trình có a + b + c = 0 nên có hai nghiệm phân biệt x1 = 1 ; x2 = c/a = -3

Vậy ...

2. a) Để phương trình có hai nghiệm phân biệt thì Δ' > 0

=> 1 - ( 4m + 1 ) > 0

<=> 1 - 4m - 1 > 0 <=> m < 0

b) Theo hệ thức Viète ta có : \(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=-2\\x_1x_2=\frac{c}{a}=4m+1\end{cases}}\)

Để phương trình có hai nghiệm trái dấu thì x1x2 < 0 <=> 4m + 1 < 0 <=> m < -1/4

c) x12 + x22 = 11 <=> ( x1 + x2 )2 - 2x1x2 = 11

<=> 4 - 2( 4m + 1 ) = 11

<=> -8m - 2 = 7

<=> m = -9/8

28 tháng 4 2021

giải dùm vs ạ

NV
28 tháng 4 2021

Pt có 2 nghiệm khi:

\(\left\{{}\begin{matrix}m\ne0\\\Delta=9\left(m+1\right)^2-4m\left(2m+4\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne0\\m^2+2m+9\ge0\left(luôn-đúng\right)\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{-3\left(m+1\right)}{m}\\x_1x_2=\dfrac{2m+4}{m}\end{matrix}\right.\)

\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)

\(\Leftrightarrow\dfrac{9\left(m+1\right)^2}{m^2}-\dfrac{2\left(2m+4\right)}{m}=4\)

\(\Leftrightarrow9\left(m+1\right)^2-2m\left(2m+4\right)=4m^2\)

\(\Leftrightarrow m^2+10m+9=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=-9\end{matrix}\right.\)