K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2016

Ta có

20162017 có chữ số tận ccùg là 6

Ta lại có 20174 có tận cùng là 1 nên (20174)504 co chữ số tận cùng là 1.

=> 20162017 + 20172016 có chữ số tận cùng là 7.

Mà không có số chính phương nào có tận cùng là 7 nên số đã cho không phải số chính phương

13 tháng 12 2016

Ta có: 20162017 tận cùng = 1

Suy ra 20162017+20172016 tận cùng=7

Mà không có số chính phương tận cùng = 7 nên không phải

26 tháng 11 2015

3.

x={0 ;1;2 ;3 ;4 ;5 ;6 ;7........................}

ƯC(100;500) =100

suy ra x =100

BC(10;25) =50

suy ra x =50

tick nha

31 tháng 1 2017

Ta có 1! + 2! + 3! + 4! = 33

những giai thừa từ 5! trở lên đều có tận cùng là 0 (vì đều chia hết cho 10)

=> 1! + 2! + 3! + ... + 2017! có tận cùng là 3

Vì không có số chính phương nào có tận cùng là 3, nên 1! + 2! + 3! + 4! + ...+ 2017! không phải là số chính phương

28 tháng 12 2018

Không! k mk đi nhé ^^

1 tháng 7 2019

20 số nguyên liên tiếp có sáu số chia hết cho 3

=>tổng của 20 số chính phương liên tiếp có 6 số chia hết cho 3 và có 14 số chia dư 1

=> tổng 20 số chính phương liên tiếp chia 3 dư 2

=> tổng 20 số chính phương liên tiếp không phải số chính phương

6 tháng 9 2015

Tổng có 2004 số hạng, nhóm các số hạng từ trái sang phải, mỗi nhóm 4 số hạng được 501 nhóm. Trong mỗi nhóm chữ số tận cùng của tổng là 0 nên A có tận cùng là 0. Vậy A là số chính phương.

6 tháng 9 2015

top scorer sai rồi  

17 tháng 7 2015

a)A=3+32+33+...+32004

=>3A=32+33+34+...+32005

=>3A-A=(32+33+34+...+32005)-(3+32+33+...+32004)

=>2A=32+33+34+...+32005-3-32-33-...-32004

=>2A=32005-3

=>A=0,10025

17 tháng 7 2015

a)A=3+32+33+...+32004

=>3A=32+33+34+...+32005

=>3A-A=(32+33+34+...+32005)-(3+32+33+...+32004)

=>2A=32+33+34+...+32005-3-32-33-...-32004

=>2A=32005-3

=>A=\(\frac{3^{2005}-3}{2}\)

 

30 tháng 7 2016

Gọi dãy số đó là: n^2; (n+1)^2; (n+2)^2;...;(n+1973)^2 (n>=0)

Ta xét tổng của dãy trên:

       \(n^2+\left(n+1\right)^2+\left(n+2\right)^2+...+\left(n+1973\right)^2\)

<=>\(\left[n^2+\left(n+1\right)^2+\left(n+3\right)^2\right]+....+\left[\left(n+1971\right)^2+\left(n+1972\right)^2+\left(n+1973\right)^2\right]\)

Dễ thấy (n; n+1; n+3);....;(n+1971;n+1972;n+1973) là nhóm 3 số tự nhiên liên tiếp

Do đó, luôn có 1 số chia hết cho 3. Tổng 2 số còn lại chia 3 dư 2. Do đó tổng của dãy trên trở thành:

\(\left(3k_1+2\right)+\left(3k_2+2\right)+...+\left(3k_{658}+2\right)\)

\(3.\left(k_1+k_2+k_3+...+k_{658}\right)+2.658\)

=\(3.\left(k_1+k_2+k_3+...+k_{658}\right)+1316\)chia 3 dư 2

Mà một số chính phương khi chia 3 dư 0 hoac 1

Vậy tổng trên không thể là số chính phương

30 tháng 7 2016

hay ket ban voi luffy

28 tháng 5 2016
  • HỌC TOÁN
  • KIỂM TRA
  • BÁO CÁO
  • THÔNG TIN

Bài toán 104

Một số chính phương là số viết được dạng tích của một số tự nhiên với chính nó.

Ta có:

  - Số \(14\) không phải là số chính phương

  - Số \(144\) là số chính phương vì \(144=12\times12=12^2\)

  - Số \(1444\) là số chính phương vì \(1444=38\times38=38^2\) .

Bạn hãy tìm tất cả các số có dạng \(144...4\) (số có các chữ số 4 sau chữ số 1) mà là số chính phương?

----------------------

Các bạn trình bày lời giải đầy đủ vào ô Gửi Ý kiến phía dưới. Năm bạn có lời giải hay và sớm nhất sẽ được cộng/thưởng 1 tháng VIP của Online Math. Đáp án và giải thưởng sẽ được công bố vào Thứ Sáu ngày 3/6/2016. Câu đố tiếp theo sẽ lên mạng vào Thứ Bảy ngày 4/6/2016.

 

Xem thêm:

  • Bài toán 103
  • Bài toán 102
  • Bài toán 101
  • Bài toán 100
  • Bài toán 99

 

Hoàng Thị Thu Huyền DMCA.com Protection Status                  Gửi ý kiến 23 bình luận
  King Math09:38:50 ngày 28/05/2016 Trả lời

Đặt $a_1=14;a_2=144;a_3=1444;a_n=144...4$a1=14;a2=144;a3=1444;an=144...4, ta xét các trường hợp:

a, $n<4$n<4 

Ta dễ dàng thấy $a_1=14$a1=14 không phải là số chính phương và $a_2=144=12^2$a2=144=122 ; $a_3=1444=38^2$a3=1444=382 là các số chính phương.

b, $n\ge4$n4 

Ta có: $a_n=144...4=10000b+4444\left(b\in Z\right)$an=144...4=10000b+4444(bZ) 

Vì $10000\vdots16$1000016 và 4444 chia 16 dư 12 nên $a_n$an chia 16 dư 12

Giả sử $a_n$an là số chính phương, vì $a_n\vdots4$an4 nhưng không chia hết cho 16 nên:

$a_n=\left(4k+2\right)^2=16\left(k^2+k\right)+4$an=(4k+2)2=16(k2+k)+4 $\Rightarrow$ $a_n$an chia 16 dư 4. Vô lý.

Vậy $a_n$an không phải là số chính phương.

Kết luận: Trong dãy số tự nhiên $a_n=144...4$an=144...4, chỉ có $a_2=144$a2=144 và $a_3=1444$a3=1444 là các số chính phương.

31 tháng 5 2016

Đặt a1=14;a2=144;a3=1444;an=144..4, ta xét các trường hợp a, n<4.

Ta dễ dàng thấy a1=14 không phải là số chính phương và a2=144=122 ; a3=1444=382 là các số chính phương.

b,n>4

Ta có : an=144..4=10000b+4444(bεZ) 

Vì 10000:16 và 4444 chia 16 dư 12 nên an chia 16 dư 12

Giả sử an=(4k+2)2=16(k2+k)+4=>an chia 16 dư 4. Vô lý.

Vậy an không phải là số chính phương.

Kết luận : Trong dãy số tự nhiên an=144..4,, chỉ có a2=144 và a3=1444 là các số chính phương

5 tháng 12 2016

 Số chính phương là số nguyên có căn bậc 2 là một số nguyên, hay nói cách khác, số chính phương là bình phương (lũy thừa bậc 2) của một số nguyên khác.