Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(a=3k+r\left(k\in Z\right),r\in0;1;2\)
\(a^3=27k^3+27k^2r+9kr^2+r^3\)
\(r\in0;1;2\) nên \(r^3\in0;1;8\) .Vậy \(a^3\): 9 dư 0 ; 1 ; 8
Tương tự \(b^3:9\) dư 0 ; 1 ; 8
\(c^3:9\) dư 0 ; 1 ; 8
Nên : \(a^3+b^3+c^3:9\) có số dư là 0;1;2;3;6;7;8
Mà : \(2012:9\) dư 5 nên không tồn tại a , b , c thõa mãn
a: Gọi hai số cần tìm là 2k;2k+2
Theo đề, ta có:
\(\left(2k+2\right)^3-8k^3=2012\)
\(\Leftrightarrow24k^2+24k+8=2012\)
\(\Leftrightarrow24k^2+24k-2004=0\)
\(\Leftrightarrow2k^2+2k-167=0\)
=>Sai đề rồi bạn, vì phương trình này ko có nghiệm nguyên
d: \(a^3+b=14\)
\(\Leftrightarrow\left(a+b\right)^3-3ab\left(a+b\right)=14\)
=>ab=-1
\(a^2+b^2=\left(a+b\right)^2-2ab=2^2-2\cdot\left(-1\right)=4\)
\(\left(a^3+b^3\right)\left(a^2+b^2\right)=56\)
\(\Leftrightarrow a^5+a^3b^2+a^2b^3+b^5=56\)
\(\Leftrightarrow a^5+b^5+a^2b^2\left(a+b\right)=56\)
\(\Leftrightarrow a^5+b^5=54\)
giả sử tồn tại,
vì abc là số có 3 chữ số nên 99 < abc < 1000 mà abc = (a+b+c)3 do đó
a+b+c chỉ có thể nhận các giá trị bằng 5; 6; 7; 8; 9
nếu a+b+c = 5 => abc = 53 = 125 khác (1+2+5)3 = 83
nếu a+b+c = 6 => abc = 63 = 216 khác (2+1+6)3 = 93
nếu a+b+c = 7 => abc = 73 = 343 khác (3+4+3)3 = 103
nếu a+b+c = 8 => abc = 83 = 512 = (5+1+2)3 = 83 (nhận)
nếu a+b+c = 9 => abc = 93 = 729 khác (7+2+9)3 = 183
Vậy có tồn tại ......