Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 4:
Ta có:
\(\dfrac{a}{2}=\dfrac{b}{6}=\dfrac{c}{8}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2}=\dfrac{b}{6}=\dfrac{c}{8}=\dfrac{2a}{4}=\dfrac{2b}{12}=\dfrac{2a+2b+c}{24}\)
\(\Leftrightarrow2a+2b+c=\dfrac{24b}{6}=4b\) (1)
Áp dụng thêm một lần, ta có:
\(\dfrac{a}{2}=\dfrac{b}{6}=\dfrac{c}{8}=\dfrac{2a}{4}=\dfrac{2a-b+c}{6}\)
\(\Leftrightarrow2a-b+c=\dfrac{6b}{6}=b\) (2)
Từ (1) và (2), ta có:
\(\dfrac{2a+2b+c}{2a-b+c}=\dfrac{4b}{b}=4\)
Vậy ...
Câu 1 :
\(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b}{ab}-\dfrac{a}{ab}=\dfrac{\left(b-a\right)}{ab}=\dfrac{1}{a-b}\)
Từ đó suy ra : (b-a)(a-b)=ab <=> \(-a^2-b^2+2ab=-\left(a-b\right)^2\)=ab
Mà a,b là số dương nên ab >0 , \(\left(a-b\right)^2>0\) nên \(-\left(a-b\right)^2< 0\)
( không thỏa mãn)
Vậy không có bất kì a,b nguyên dương nào mà \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{1}{a-b}\)
Giả sử \(0< a\le c\)\(\Rightarrow a^2\le c^2\)
\(a^2+b^2>5c^2\)
\(\Rightarrow a^2+b^2>5a^2\)
\(\Rightarrow b^2>4a^2\)
\(\Rightarrow b>2a\) (1)
\(c^2\ge a^2\Rightarrow c^2+b^2\ge a^2+b^2>5c^2\)
\(\Rightarrow c^2+b^2>5c^2\)\(\Rightarrow b^2>4c^2\Rightarrow b>2c\) (2)
Cộng (1) và (2) ta được:
\(2b>2a+2c\Rightarrow b>a+c\) ( vô lý )
\(\Rightarrow c< a\)
Chứng minh tương tự : \(c< b\)
Do \(\hept{\begin{cases}c< a\\c< b\end{cases}\Leftrightarrow\hept{\begin{cases}AB< BC\\AB< AC\end{cases}}}\Rightarrow\hept{\begin{cases}\widehat{C}< \widehat{A}\\\widehat{C}< \widehat{B}\end{cases}}\)
\(\Rightarrow2\widehat{C}< \widehat{A}+\widehat{B}\)
\(\Rightarrow3\widehat{C}< \widehat{A}+\widehat{B}+\widehat{C}=180^o\)
\(\Rightarrow\widehat{C}< 60^o\) (đpcm)
câu a và b là 2 cặp đơn thức đồng dạng còn câu c thì k có cặp đơn thức đồng dạng
t k nhai hình,tốn time :v
\(\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)\)
\(\Rightarrow\dfrac{1}{c}=\dfrac{1}{2}\left(\dfrac{a+b}{ab}\right)\)
\(\Rightarrow\dfrac{1}{c}=\dfrac{a+b}{2ab}\)
\(\Rightarrow ac+bc=2ab\)
\(\Rightarrow ac+bc-ab=ab\)
\(\Rightarrow ac-ab=ab-bc\)
\(\Rightarrow a\left(c-b\right)=b\left(a-c\right)\)
\(\Rightarrow\dfrac{a}{b}=\dfrac{a-c}{c-b}\)
A B C E D 1 2 F 1 1 2 2 1 2
a. Xét \(\Delta BDA\) và \(\Delta BDE\) có:
\(BA=BE\left(gt\right)\)
\(\widehat{B_1}=\widehat{B_2}\) ( tia phân giác góc B )
\(BD\) cạnh chung
Do đó \(\Delta BDA=\Delta BDE\left(c.g.c\right)\)
\(\Rightarrow DA=DE\) ( cạnh tương ứng )
b. Vì \(\Delta BDA=\Delta BDE\left(cmt\right)\Rightarrow\widehat{A_1}=\widehat{E_1}\) ( góc tương ứng ) và \(\widehat{D_1}=\widehat{D_2}\) ( góc tương ứng )
Ta có:
\(\widehat{A_2}=180^0-\widehat{A_1}\) ( kề bù )
\(\widehat{E_2}=180^0-\widehat{E_1}\) ( kề bù )
Mà \(\widehat{A_1}=\widehat{E_1}\left(cmt\right)\Rightarrow\widehat{A_2}=\widehat{E_2}\)
Xét \(\Delta AFD\) và \(\Delta ECD\) có:
\(\widehat{A_2}=\widehat{E_2}\left(cmt\right)\)
\(DA=DE\left(cmt\right)\)
\(\widehat{FDA}=\widehat{CDE}\) ( đối đỉnh )
Do đó \(\Delta AFD=\Delta ECD\left(g.c.g\right)\)
\(\Rightarrow FD=CD\) ( cạnh tương ứng )
Ta có:
\(\widehat{FDB}=\widehat{D_1}+\widehat{FDA}\)
\(\widehat{CDB}=\widehat{D_2}+\widehat{CDE}\)
Mà \(\widehat{D_1}=\widehat{D_2}\) ( chứng minh câu a ) và \(\widehat{FDA}=\widehat{CDE}\) ( đối đỉnh ) \(\Rightarrow\widehat{FDB}=\widehat{CDB}\)
Xét \(\Delta BDF\) và \(\Delta BDC\) có:
\(\widehat{B_1}=\widehat{B_2}\) ( tia phân giác của góc B )
\(BD\) cạnh chung
\(\widehat{FDA}=\widehat{CDE}\left(cmt\right)\)
Do đó \(\Delta BDF=\Delta BDC\left(g.c.g\right)\)
Còn bài 2 thì Mashiro Shiina lm rồi
Bài 1:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\left\{\begin{matrix} \frac{2a+5b}{3a-4b}=\frac{2bk+5b}{3bk-4b}=\frac{b(2k+5)}{b(3k-4)}=\frac{2k+5}{3k-4}\\ \frac{2c+5d}{3c-4d}=\frac{2dk+5d}{3dk-4d}=\frac{d(2k+5)}{d(3k-4)}=\frac{2k+5}{3k-4}\end{matrix}\right.\)
\(\Rightarrow \frac{2a+5b}{3a-4b}=\frac{2c+5d}{3c-4d}\)
Ta có đpcm.
Bài 2:
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow a=bk; c=dk\)
Khi đó: \(\frac{ab}{cd}=\frac{bk.b}{dk.d}=\frac{b^2}{d^2}\)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{(bk)^2+b^2}{(dk)^2+d^2}=\frac{b^2(k^2+1)}{d^2(k^2+1)}=\frac{b^2}{d^2}\)
Do đó: \(\frac{ab}{cd}=\frac{a^2+b^2}{c^2+d^2}(=\frac{b^2}{d^2})\) . Ta có đpcm.
Chắc đề bài phải là \(a=\dfrac{3}{2}b\) và \(b=\dfrac{3}{2}c\) chứ em?
Vâng em vt thiếu