Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔAEB vuông ạti E và ΔAFC vuôg tại F có
góc BAE chung
=>ΔAEB đồng dạg vơi ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
=>ΔAEF đồng dạng vơi ΔABC
a) Xét \(\Delta\)ABE và \(\Delta\)ACF có
\(\widehat{A}\)là góc chung
\(\widehat{AEB}\)=\(\widehat{AFC}\)(=\(90^O\))
=> \(\Delta\)ABE đồng dạng \(\Delta\)ACF (g.g)
=> \(\frac{AE}{AF}\)=\(\frac{AB}{AC}\)
=> \(\frac{AE}{AB}\)=\(\frac{AF}{AC}\)
Xét \(\Delta\)AEF và \(\Delta\)ABC có
\(\frac{AE}{AB}\)=\(\frac{AF}{AC}\)
Và \(\widehat{A}\)góc chung
Suy ra \(\Delta\)AEF đồng dạng \(\Delta\)ABC( c.g.c) (1)
b) Tương tự, chứng minh \(\Delta\)BEC đồng dạng\(\Delta\)ADC ( G.G)
=> \(\frac{EC}{DC}\)=\(\frac{BC}{AC}\)
=> \(\frac{EC}{BC}\)=\(\frac{DC}{AC}\)
Xét \(\Delta\)DEC và \(\Delta\)ABC có
\(\frac{EC}{BC}\)=\(\frac{DC}{AC}\)
\(\widehat{C}\)góc chung
=> \(\Delta\)DEC đồng dạng \(\Delta\)ABC( c.g.c) (2)
Từ (1) (2) => \(\Delta\)DEC đồng dạng \(\Delta\)AEF
=> \(\widehat{DEC}\)=\(\widehat{AEF}\)(3)
Mà \(\widehat{AEB}\)= \(\widehat{CEB}\)= \(90^O\)
=> \(\widehat{AEF}\)+\(\widehat{FEB}\)=\(\widehat{DEC}\)+\(\widehat{BED}\)(4)
Từ (3)(4) => \(\widehat{FEB}\)=\(\widehat{BED}\)
=> EH là phân giác góc FED