K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2021

Không thấy ạ

haizz đợi tý để tui đăng lại vậy ;-;

2 tháng 2 2017

ta có

A=1/2+2/2^2+3/2^3+4/2^4+.....+100/2^100

2A=2/2^2+2/2^3+2/2^4+.......+100/2^100

2A-A=1/2-100/2^100

=>A=1/2

CHẮC SAI ẤY MÀ

2 tháng 2 2017

Bạn bấm đề lên google xem được không , không cần k cho mình đâu 

8 tháng 7 2019

#)Giải : (Bài này ez mak :v)

\(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

\(\Rightarrow\left(a+2\right)\left(b-3\right)=\left(a-2\right)\left(b+3\right)\)(bước này mk làm tắt đi nhé)

\(\Rightarrow3a=2b\)

\(\Rightarrow\frac{a}{2}=\frac{b}{3}\)

\(\Rightarrowđpcm\)

8 tháng 7 2019

Ta có: \(\frac{a+2}{a-2}=\frac{b+3}{b-3}\)

=> \(\frac{\left(a-2\right)+4}{a-2}=\frac{\left(b-3\right)+6}{b-3}\)

=> \(1+\frac{4}{a-2}=1+\frac{6}{b-3}\)

=> \(\frac{4}{a-2}=\frac{6}{b-3}\)

=> \(4\left(b-3\right)=6\left(a-2\right)\)

=> \(4b-12=6a-12\)

=> \(4b=6a\)

=> \(2b=3a\)

=> \(\frac{b}{3}=\frac{a}{2}\)

19 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}-\dfrac{4}{3}x+\dfrac{1}{2}=\dfrac{1}{2}\\-\dfrac{4}{3}x+\dfrac{1}{2}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{4}\end{matrix}\right.\\ c,\Leftrightarrow\left(\dfrac{1}{2}\right)^x\left(1+\dfrac{1}{4}\right)=\dfrac{5}{4}\\ \Leftrightarrow\left(\dfrac{1}{2}\right)^x=1\Leftrightarrow x=0\)

19 tháng 10 2021

b: Ta có: \(3^x+3^{x+2}=20\)

\(\Leftrightarrow3^x\cdot10=20\)

\(\Leftrightarrow3^x=2\left(loại\right)\)

13 tháng 6 2016

hình như cậu ghi sai đề?

13 tháng 6 2016
giờ theo mình chắc là hoàn chỉnh oy
26 tháng 12 2017

ta phân tích các số

     a=2^100=2^20^5=40^5

     b=3^75=3^15^5=45^5

     c=5^50=5^10^5=50^5

ba số trên có cùng số mũ ta so sánh cơ số 

vậy thứ tự sắp xếp từ nhỏ đến lớn là 40^5; 45^5; 50^5 hay 2^100; 3^75; 5^50

7 tháng 1 2018

sai rui

27 tháng 6 2018

\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(2A+A=2^{101}-2\)

\(A=\frac{2^{101}-2}{3}\)

\(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)

\(3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{98}}\)

\(3B-B=1-\frac{1}{3^{99}}\)

\(B=\frac{1-\frac{1}{3^{99}}}{2}\)

27 tháng 6 2018

\(A=2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\)

\(2A=2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-2^2\)

\(2A+A=\left(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3-^2\right)+\left(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2-2\right)\)

\(3A=2^{101}-2\)

\(A=\frac{2^{101}-2}{3}\)

Chúc bạn học tốt ~